| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elabgf | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| elabgf.1 | 
 | 
| elabgf.2 | 
 | 
| elabgf.3 | 
 | 
| Ref | Expression | 
|---|---|
| elabgf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elabgf.1 | 
. 2
 | |
| 2 | nfab1 2341 | 
. . . 4
 | |
| 3 | 1, 2 | nfel 2348 | 
. . 3
 | 
| 4 | elabgf.2 | 
. . 3
 | |
| 5 | 3, 4 | nfbi 1603 | 
. 2
 | 
| 6 | eleq1 2259 | 
. . 3
 | |
| 7 | elabgf.3 | 
. . 3
 | |
| 8 | 6, 7 | bibi12d 235 | 
. 2
 | 
| 9 | abid 2184 | 
. 2
 | |
| 10 | 1, 5, 8, 9 | vtoclgf 2822 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 | 
| This theorem is referenced by: elabf 2907 elabg 2910 elab3gf 2914 elrabf 2918 bj-intabssel 15435 | 
| Copyright terms: Public domain | W3C validator |