Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elabgf | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
elabgf.1 | |
elabgf.2 | |
elabgf.3 |
Ref | Expression |
---|---|
elabgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabgf.1 | . 2 | |
2 | nfab1 2314 | . . . 4 | |
3 | 1, 2 | nfel 2321 | . . 3 |
4 | elabgf.2 | . . 3 | |
5 | 3, 4 | nfbi 1582 | . 2 |
6 | eleq1 2233 | . . 3 | |
7 | elabgf.3 | . . 3 | |
8 | 6, 7 | bibi12d 234 | . 2 |
9 | abid 2158 | . 2 | |
10 | 1, 5, 8, 9 | vtoclgf 2788 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wnf 1453 wcel 2141 cab 2156 wnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: elabf 2873 elabg 2876 elab3gf 2880 elrabf 2884 bj-intabssel 13824 |
Copyright terms: Public domain | W3C validator |