| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabgf | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| elabgf.1 |
|
| elabgf.2 |
|
| elabgf.3 |
|
| Ref | Expression |
|---|---|
| elabgf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgf.1 |
. 2
| |
| 2 | nfab1 2350 |
. . . 4
| |
| 3 | 1, 2 | nfel 2357 |
. . 3
|
| 4 | elabgf.2 |
. . 3
| |
| 5 | 3, 4 | nfbi 1612 |
. 2
|
| 6 | eleq1 2268 |
. . 3
| |
| 7 | elabgf.3 |
. . 3
| |
| 8 | 6, 7 | bibi12d 235 |
. 2
|
| 9 | abid 2193 |
. 2
| |
| 10 | 1, 5, 8, 9 | vtoclgf 2831 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: elabf 2916 elabg 2919 elab3gf 2923 elrabf 2927 bj-intabssel 15725 |
| Copyright terms: Public domain | W3C validator |