ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabgf Unicode version

Theorem elabgf 2922
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabgf.1  |-  F/_ x A
elabgf.2  |-  F/ x ps
elabgf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elabgf  |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps )
)

Proof of Theorem elabgf
StepHypRef Expression
1 elabgf.1 . 2  |-  F/_ x A
2 nfab1 2352 . . . 4  |-  F/_ x { x  |  ph }
31, 2nfel 2359 . . 3  |-  F/ x  A  e.  { x  |  ph }
4 elabgf.2 . . 3  |-  F/ x ps
53, 4nfbi 1613 . 2  |-  F/ x
( A  e.  {
x  |  ph }  <->  ps )
6 eleq1 2270 . . 3  |-  ( x  =  A  ->  (
x  e.  { x  |  ph }  <->  A  e.  { x  |  ph }
) )
7 elabgf.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
86, 7bibi12d 235 . 2  |-  ( x  =  A  ->  (
( x  e.  {
x  |  ph }  <->  ph )  <->  ( A  e. 
{ x  |  ph } 
<->  ps ) ) )
9 abid 2195 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
101, 5, 8, 9vtoclgf 2836 1  |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   F/wnf 1484    e. wcel 2178   {cab 2193   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  elabf  2923  elabg  2926  elab3gf  2930  elrabf  2934  bj-intabssel  15925
  Copyright terms: Public domain W3C validator