Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elabgf | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
elabgf.1 | |
elabgf.2 | |
elabgf.3 |
Ref | Expression |
---|---|
elabgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabgf.1 | . 2 | |
2 | nfab1 2319 | . . . 4 | |
3 | 1, 2 | nfel 2326 | . . 3 |
4 | elabgf.2 | . . 3 | |
5 | 3, 4 | nfbi 1587 | . 2 |
6 | eleq1 2238 | . . 3 | |
7 | elabgf.3 | . . 3 | |
8 | 6, 7 | bibi12d 235 | . 2 |
9 | abid 2163 | . 2 | |
10 | 1, 5, 8, 9 | vtoclgf 2793 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 wnf 1458 wcel 2146 cab 2161 wnfc 2304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 |
This theorem is referenced by: elabf 2878 elabg 2881 elab3gf 2885 elrabf 2889 bj-intabssel 14099 |
Copyright terms: Public domain | W3C validator |