| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| sylan2b.1 | 
 | 
| sylan2b.2 | 
 | 
| Ref | Expression | 
|---|---|
| sylan2b | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylan2b.1 | 
. . 3
 | |
| 2 | 1 | biimpi 120 | 
. 2
 | 
| 3 | sylan2b.2 | 
. 2
 | |
| 4 | 2, 3 | sylan2 286 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: syl2anb 291 dcor 937 bm1.1 2181 eqtr3 2216 elnelne1 2471 elnelne2 2472 morex 2948 reuss2 3443 reupick 3447 rabsneu 3695 opabss 4097 triun 4144 poirr 4342 wepo 4394 wetrep 4395 rexxfrd 4498 reg3exmidlemwe 4615 nnsuc 4652 fnfco 5432 fun11iun 5525 fnressn 5748 fvpr1g 5768 fvtp1g 5770 fvtp3g 5772 fvtp3 5775 f1mpt 5818 caovlem2d 6116 offval 6143 dfoprab3 6249 1stconst 6279 2ndconst 6280 poxp 6290 tfrlemisucaccv 6383 tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 fiintim 6992 addclpi 7394 addnidpig 7403 reapmul1 8622 nnnn0addcl 9279 un0addcl 9282 un0mulcl 9283 zltnle 9372 nn0ge0div 9413 uzind3 9439 uzind4 9662 ltsubrp 9765 ltaddrp 9766 xrlttr 9870 xrltso 9871 xltnegi 9910 xaddnemnf 9932 xaddnepnf 9933 xaddcom 9936 xnegdi 9943 xsubge0 9956 fzind2 10315 qltnle 10333 qbtwnxr 10347 exp3vallem 10632 expp1 10638 expnegap0 10639 expcllem 10642 mulexpzap 10671 expaddzap 10675 expmulzap 10677 hashunlem 10896 shftf 10995 sqrtdiv 11207 mulcn2 11477 summodclem2 11547 fsum3 11552 cvgratz 11697 prodmodclem2 11742 zproddc 11744 prodsnf 11757 dvdsflip 12016 dvdsfac 12025 bitsfzolem 12118 lcmgcdlem 12245 rpexp1i 12322 hashdvds 12389 hashgcdlem 12406 phisum 12409 pcqcl 12475 pcid 12493 ssnnctlemct 12663 issubmd 13106 grpinvnzcl 13204 mulgneg 13270 mulgnn0z 13279 01eq0ring 13745 lmss 14482 xmetrtri 14612 blssioo 14789 divcnap 14801 dedekindicc 14869 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvrecap 14949 dveflem 14962 lgsval3 15259 lgsdir2 15274 2sqlem6 15361 bj-bdfindes 15595 bj-findes 15627 | 
| Copyright terms: Public domain | W3C validator |