| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 |
|
| sylan2b.2 |
|
| Ref | Expression |
|---|---|
| sylan2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylan2b.2 |
. 2
| |
| 4 | 2, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 937 bm1.1 2181 eqtr3 2216 elnelne1 2471 elnelne2 2472 morex 2948 reuss2 3444 reupick 3448 rabsneu 3696 opabss 4098 triun 4145 poirr 4343 wepo 4395 wetrep 4396 rexxfrd 4499 reg3exmidlemwe 4616 nnsuc 4653 fnfco 5435 fun11iun 5528 fnressn 5751 fvpr1g 5771 fvtp1g 5773 fvtp3g 5775 fvtp3 5778 f1mpt 5821 caovlem2d 6120 offval 6147 dfoprab3 6258 1stconst 6288 2ndconst 6289 poxp 6299 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 fiintim 7001 addclpi 7413 addnidpig 7422 reapmul1 8641 nnnn0addcl 9298 un0addcl 9301 un0mulcl 9302 zltnle 9391 nn0ge0div 9432 uzind3 9458 uzind4 9681 ltsubrp 9784 ltaddrp 9785 xrlttr 9889 xrltso 9890 xltnegi 9929 xaddnemnf 9951 xaddnepnf 9952 xaddcom 9955 xnegdi 9962 xsubge0 9975 fzind2 10334 qltnle 10352 qbtwnxr 10366 exp3vallem 10651 expp1 10657 expnegap0 10658 expcllem 10661 mulexpzap 10690 expaddzap 10694 expmulzap 10696 hashunlem 10915 shftf 11014 sqrtdiv 11226 mulcn2 11496 summodclem2 11566 fsum3 11571 cvgratz 11716 prodmodclem2 11761 zproddc 11763 prodsnf 11776 dvdsflip 12035 dvdsfac 12044 bitsfzolem 12138 lcmgcdlem 12272 rpexp1i 12349 hashdvds 12416 hashgcdlem 12433 phisum 12436 pcqcl 12502 pcid 12520 ssnnctlemct 12690 issubmd 13178 grpinvnzcl 13276 mulgneg 13348 mulgnn0z 13357 01eq0ring 13823 lmss 14590 xmetrtri 14720 blssioo 14897 divcnap 14909 dedekindicc 14977 dvidlemap 15035 dvidrelem 15036 dvidsslem 15037 dvrecap 15057 dveflem 15070 lgsval3 15367 lgsdir2 15382 2sqlem6 15469 bj-bdfindes 15703 bj-findes 15735 2omap 15750 |
| Copyright terms: Public domain | W3C validator |