| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 |
|
| sylan2b.2 |
|
| Ref | Expression |
|---|---|
| sylan2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylan2b.2 |
. 2
| |
| 4 | 2, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 938 bm1.1 2192 eqtr3 2227 elnelne1 2482 elnelne2 2483 morex 2964 reuss2 3461 reupick 3465 rabsneu 3716 invdisjrab 4053 opabss 4124 triun 4171 poirr 4372 wepo 4424 wetrep 4425 rexxfrd 4528 reg3exmidlemwe 4645 nnsuc 4682 fnfco 5472 fun11iun 5565 fnressn 5793 fvpr1g 5813 fvtp1g 5815 fvtp3g 5817 fvtp3 5820 f1mpt 5863 caovlem2d 6162 offval 6189 dfoprab3 6300 1stconst 6330 2ndconst 6331 poxp 6341 tfrlemisucaccv 6434 tfr1onlemsucaccv 6450 tfrcllemsucaccv 6463 fiintim 7054 pr1or2 7328 addclpi 7475 addnidpig 7484 reapmul1 8703 nnnn0addcl 9360 un0addcl 9363 un0mulcl 9364 zltnle 9453 nn0ge0div 9495 uzind3 9521 uzind4 9744 ltsubrp 9847 ltaddrp 9848 xrlttr 9952 xrltso 9953 xltnegi 9992 xaddnemnf 10014 xaddnepnf 10015 xaddcom 10018 xnegdi 10025 xsubge0 10038 fzind2 10405 qltnle 10423 qbtwnxr 10437 exp3vallem 10722 expp1 10728 expnegap0 10729 expcllem 10732 mulexpzap 10761 expaddzap 10765 expmulzap 10767 hashunlem 10986 cats1un 11212 reuccatpfxs1 11238 shftf 11256 sqrtdiv 11468 mulcn2 11738 summodclem2 11808 fsum3 11813 cvgratz 11958 prodmodclem2 12003 zproddc 12005 prodsnf 12018 dvdsflip 12277 dvdsfac 12286 bitsfzolem 12380 lcmgcdlem 12514 rpexp1i 12591 hashdvds 12658 hashgcdlem 12675 phisum 12678 pcqcl 12744 pcid 12762 ssnnctlemct 12932 issubmd 13421 grpinvnzcl 13519 mulgneg 13591 mulgnn0z 13600 01eq0ring 14066 lmss 14833 xmetrtri 14963 blssioo 15140 divcnap 15152 dedekindicc 15220 dvidlemap 15278 dvidrelem 15279 dvidsslem 15280 dvrecap 15300 dveflem 15313 lgsval3 15610 lgsdir2 15625 2sqlem6 15712 umgredg 15849 umgrpredgv 15851 umgredgne 15854 umgredgnlp 15856 bj-bdfindes 16084 bj-findes 16116 2omap 16132 |
| Copyright terms: Public domain | W3C validator |