![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylan2b.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan2b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 120 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylan2b.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan2 286 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl2anb 291 dcor 937 bm1.1 2178 eqtr3 2213 elnelne1 2468 elnelne2 2469 morex 2944 reuss2 3439 reupick 3443 rabsneu 3691 opabss 4093 triun 4140 poirr 4338 wepo 4390 wetrep 4391 rexxfrd 4494 reg3exmidlemwe 4611 nnsuc 4648 fnfco 5428 fun11iun 5521 fnressn 5744 fvpr1g 5764 fvtp1g 5766 fvtp3g 5768 fvtp3 5771 f1mpt 5814 caovlem2d 6111 offval 6138 dfoprab3 6244 1stconst 6274 2ndconst 6275 poxp 6285 tfrlemisucaccv 6378 tfr1onlemsucaccv 6394 tfrcllemsucaccv 6407 fiintim 6985 addclpi 7387 addnidpig 7396 reapmul1 8614 nnnn0addcl 9270 un0addcl 9273 un0mulcl 9274 zltnle 9363 nn0ge0div 9404 uzind3 9430 uzind4 9653 ltsubrp 9756 ltaddrp 9757 xrlttr 9861 xrltso 9862 xltnegi 9901 xaddnemnf 9923 xaddnepnf 9924 xaddcom 9927 xnegdi 9934 xsubge0 9947 fzind2 10306 qltnle 10313 qbtwnxr 10326 exp3vallem 10611 expp1 10617 expnegap0 10618 expcllem 10621 mulexpzap 10650 expaddzap 10654 expmulzap 10656 hashunlem 10875 shftf 10974 sqrtdiv 11186 mulcn2 11455 summodclem2 11525 fsum3 11530 cvgratz 11675 prodmodclem2 11720 zproddc 11722 prodsnf 11735 dvdsflip 11993 dvdsfac 12002 lcmgcdlem 12215 rpexp1i 12292 hashdvds 12359 hashgcdlem 12376 phisum 12378 pcqcl 12444 pcid 12462 ssnnctlemct 12603 issubmd 13046 grpinvnzcl 13144 mulgneg 13210 mulgnn0z 13219 01eq0ring 13685 lmss 14414 xmetrtri 14544 blssioo 14713 divcnap 14723 dedekindicc 14787 dvidlemap 14845 dvrecap 14862 dveflem 14872 lgsval3 15134 lgsdir2 15149 2sqlem6 15207 bj-bdfindes 15441 bj-findes 15473 |
Copyright terms: Public domain | W3C validator |