![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylan2b.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan2b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 120 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylan2b.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan2 286 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl2anb 291 dcor 937 bm1.1 2178 eqtr3 2213 elnelne1 2468 elnelne2 2469 morex 2945 reuss2 3440 reupick 3444 rabsneu 3692 opabss 4094 triun 4141 poirr 4339 wepo 4391 wetrep 4392 rexxfrd 4495 reg3exmidlemwe 4612 nnsuc 4649 fnfco 5429 fun11iun 5522 fnressn 5745 fvpr1g 5765 fvtp1g 5767 fvtp3g 5769 fvtp3 5772 f1mpt 5815 caovlem2d 6113 offval 6140 dfoprab3 6246 1stconst 6276 2ndconst 6277 poxp 6287 tfrlemisucaccv 6380 tfr1onlemsucaccv 6396 tfrcllemsucaccv 6409 fiintim 6987 addclpi 7389 addnidpig 7398 reapmul1 8616 nnnn0addcl 9273 un0addcl 9276 un0mulcl 9277 zltnle 9366 nn0ge0div 9407 uzind3 9433 uzind4 9656 ltsubrp 9759 ltaddrp 9760 xrlttr 9864 xrltso 9865 xltnegi 9904 xaddnemnf 9926 xaddnepnf 9927 xaddcom 9930 xnegdi 9937 xsubge0 9950 fzind2 10309 qltnle 10316 qbtwnxr 10329 exp3vallem 10614 expp1 10620 expnegap0 10621 expcllem 10624 mulexpzap 10653 expaddzap 10657 expmulzap 10659 hashunlem 10878 shftf 10977 sqrtdiv 11189 mulcn2 11458 summodclem2 11528 fsum3 11533 cvgratz 11678 prodmodclem2 11723 zproddc 11725 prodsnf 11738 dvdsflip 11996 dvdsfac 12005 lcmgcdlem 12218 rpexp1i 12295 hashdvds 12362 hashgcdlem 12379 phisum 12381 pcqcl 12447 pcid 12465 ssnnctlemct 12606 issubmd 13049 grpinvnzcl 13147 mulgneg 13213 mulgnn0z 13222 01eq0ring 13688 lmss 14425 xmetrtri 14555 blssioo 14732 divcnap 14744 dedekindicc 14812 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvrecap 14892 dveflem 14905 lgsval3 15175 lgsdir2 15190 2sqlem6 15277 bj-bdfindes 15511 bj-findes 15543 |
Copyright terms: Public domain | W3C validator |