| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 |
|
| sylan2b.2 |
|
| Ref | Expression |
|---|---|
| sylan2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylan2b.2 |
. 2
| |
| 4 | 2, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 937 bm1.1 2181 eqtr3 2216 elnelne1 2471 elnelne2 2472 morex 2948 reuss2 3444 reupick 3448 rabsneu 3696 opabss 4098 triun 4145 poirr 4343 wepo 4395 wetrep 4396 rexxfrd 4499 reg3exmidlemwe 4616 nnsuc 4653 fnfco 5435 fun11iun 5528 fnressn 5751 fvpr1g 5771 fvtp1g 5773 fvtp3g 5775 fvtp3 5778 f1mpt 5821 caovlem2d 6120 offval 6147 dfoprab3 6253 1stconst 6283 2ndconst 6284 poxp 6294 tfrlemisucaccv 6387 tfr1onlemsucaccv 6403 tfrcllemsucaccv 6416 fiintim 6996 addclpi 7399 addnidpig 7408 reapmul1 8627 nnnn0addcl 9284 un0addcl 9287 un0mulcl 9288 zltnle 9377 nn0ge0div 9418 uzind3 9444 uzind4 9667 ltsubrp 9770 ltaddrp 9771 xrlttr 9875 xrltso 9876 xltnegi 9915 xaddnemnf 9937 xaddnepnf 9938 xaddcom 9941 xnegdi 9948 xsubge0 9961 fzind2 10320 qltnle 10338 qbtwnxr 10352 exp3vallem 10637 expp1 10643 expnegap0 10644 expcllem 10647 mulexpzap 10676 expaddzap 10680 expmulzap 10682 hashunlem 10901 shftf 11000 sqrtdiv 11212 mulcn2 11482 summodclem2 11552 fsum3 11557 cvgratz 11702 prodmodclem2 11747 zproddc 11749 prodsnf 11762 dvdsflip 12021 dvdsfac 12030 bitsfzolem 12124 lcmgcdlem 12258 rpexp1i 12335 hashdvds 12402 hashgcdlem 12419 phisum 12422 pcqcl 12488 pcid 12506 ssnnctlemct 12676 issubmd 13153 grpinvnzcl 13251 mulgneg 13317 mulgnn0z 13326 01eq0ring 13792 lmss 14529 xmetrtri 14659 blssioo 14836 divcnap 14848 dedekindicc 14916 dvidlemap 14974 dvidrelem 14975 dvidsslem 14976 dvrecap 14996 dveflem 15009 lgsval3 15306 lgsdir2 15321 2sqlem6 15408 bj-bdfindes 15642 bj-findes 15674 2omap 15689 |
| Copyright terms: Public domain | W3C validator |