Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 | |
sylan2b.2 |
Ref | Expression |
---|---|
sylan2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | . . 3 | |
2 | 1 | biimpi 119 | . 2 |
3 | sylan2b.2 | . 2 | |
4 | 2, 3 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anb 289 dcor 930 bm1.1 2155 eqtr3 2190 elnelne1 2444 elnelne2 2445 morex 2914 reuss2 3407 reupick 3411 rabsneu 3656 opabss 4053 triun 4100 poirr 4292 wepo 4344 wetrep 4345 rexxfrd 4448 reg3exmidlemwe 4563 nnsuc 4600 fnfco 5372 fun11iun 5463 fnressn 5682 fvpr1g 5702 fvtp1g 5704 fvtp3g 5706 fvtp3 5709 f1mpt 5750 caovlem2d 6045 offval 6068 dfoprab3 6170 1stconst 6200 2ndconst 6201 poxp 6211 tfrlemisucaccv 6304 tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 fiintim 6906 addclpi 7289 addnidpig 7298 reapmul1 8514 nnnn0addcl 9165 un0addcl 9168 un0mulcl 9169 zltnle 9258 nn0ge0div 9299 uzind3 9325 uzind4 9547 ltsubrp 9647 ltaddrp 9648 xrlttr 9752 xrltso 9753 xltnegi 9792 xaddnemnf 9814 xaddnepnf 9815 xaddcom 9818 xnegdi 9825 xsubge0 9838 fzind2 10195 qltnle 10202 qbtwnxr 10214 exp3vallem 10477 expp1 10483 expnegap0 10484 expcllem 10487 mulexpzap 10516 expaddzap 10520 expmulzap 10522 hashunlem 10739 shftf 10794 sqrtdiv 11006 mulcn2 11275 summodclem2 11345 fsum3 11350 cvgratz 11495 prodmodclem2 11540 zproddc 11542 prodsnf 11555 dvdsflip 11811 dvdsfac 11820 lcmgcdlem 12031 rpexp1i 12108 hashdvds 12175 hashgcdlem 12192 phisum 12194 pcqcl 12260 pcid 12277 ssnnctlemct 12401 issubmd 12696 grpinvnzcl 12771 lmss 13040 xmetrtri 13170 blssioo 13339 divcnap 13349 dedekindicc 13405 dvidlemap 13454 dvrecap 13471 dveflem 13481 lgsval3 13713 lgsdir2 13728 2sqlem6 13750 bj-bdfindes 13984 bj-findes 14016 |
Copyright terms: Public domain | W3C validator |