Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 | |
sylan2b.2 |
Ref | Expression |
---|---|
sylan2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | . . 3 | |
2 | 1 | biimpi 119 | . 2 |
3 | sylan2b.2 | . 2 | |
4 | 2, 3 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anb 289 dcor 920 bm1.1 2142 eqtr3 2177 elnelne1 2431 elnelne2 2432 morex 2896 reuss2 3387 reupick 3391 rabsneu 3632 opabss 4028 triun 4075 poirr 4267 wepo 4319 wetrep 4320 rexxfrd 4422 reg3exmidlemwe 4537 nnsuc 4574 fnfco 5343 fun11iun 5434 fnressn 5652 fvpr1g 5672 fvtp1g 5674 fvtp3g 5676 fvtp3 5679 f1mpt 5718 caovlem2d 6010 offval 6036 dfoprab3 6136 1stconst 6165 2ndconst 6166 poxp 6176 tfrlemisucaccv 6269 tfr1onlemsucaccv 6285 tfrcllemsucaccv 6298 fiintim 6870 addclpi 7241 addnidpig 7250 reapmul1 8464 nnnn0addcl 9114 un0addcl 9117 un0mulcl 9118 zltnle 9207 nn0ge0div 9245 uzind3 9271 uzind4 9493 ltsubrp 9590 ltaddrp 9591 xrlttr 9695 xrltso 9696 xltnegi 9732 xaddnemnf 9754 xaddnepnf 9755 xaddcom 9758 xnegdi 9765 xsubge0 9778 fzind2 10131 qltnle 10138 qbtwnxr 10150 exp3vallem 10413 expp1 10419 expnegap0 10420 expcllem 10423 mulexpzap 10452 expaddzap 10456 expmulzap 10458 hashunlem 10671 shftf 10723 sqrtdiv 10935 mulcn2 11202 summodclem2 11272 fsum3 11277 cvgratz 11422 prodmodclem2 11467 zproddc 11469 prodsnf 11482 dvdsflip 11735 dvdsfac 11744 lcmgcdlem 11945 rpexp1i 12019 hashdvds 12084 hashgcdlem 12101 phisum 12103 lmss 12617 xmetrtri 12747 blssioo 12916 divcnap 12926 dedekindicc 12982 dvidlemap 13031 dvrecap 13048 dveflem 13058 bj-bdfindes 13495 bj-findes 13527 |
Copyright terms: Public domain | W3C validator |