| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 |
|
| sylan2b.2 |
|
| Ref | Expression |
|---|---|
| sylan2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylan2b.2 |
. 2
| |
| 4 | 2, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 941 bm1.1 2214 eqtr3 2249 elnelne1 2504 elnelne2 2505 morex 2987 reuss2 3484 reupick 3488 rabsneu 3739 invdisjrab 4076 opabss 4147 triun 4194 poirr 4397 wepo 4449 wetrep 4450 rexxfrd 4553 reg3exmidlemwe 4670 nnsuc 4707 fnfco 5499 fun11iun 5592 fnressn 5824 fvpr1g 5844 fvtp1g 5846 fvtp3g 5848 fvtp3 5851 f1mpt 5894 caovlem2d 6197 offval 6224 dfoprab3 6335 1stconst 6365 2ndconst 6366 poxp 6376 tfrlemisucaccv 6469 tfr1onlemsucaccv 6485 tfrcllemsucaccv 6498 fiintim 7089 pr1or2 7363 addclpi 7510 addnidpig 7519 reapmul1 8738 nnnn0addcl 9395 un0addcl 9398 un0mulcl 9399 zltnle 9488 nn0ge0div 9530 uzind3 9556 uzind4 9779 ltsubrp 9882 ltaddrp 9883 xrlttr 9987 xrltso 9988 xltnegi 10027 xaddnemnf 10049 xaddnepnf 10050 xaddcom 10053 xnegdi 10060 xsubge0 10073 fzind2 10440 qltnle 10458 qbtwnxr 10472 exp3vallem 10757 expp1 10763 expnegap0 10764 expcllem 10767 mulexpzap 10796 expaddzap 10800 expmulzap 10802 hashunlem 11021 cats1un 11248 reuccatpfxs1 11274 shftf 11336 sqrtdiv 11548 mulcn2 11818 summodclem2 11888 fsum3 11893 cvgratz 12038 prodmodclem2 12083 zproddc 12085 prodsnf 12098 dvdsflip 12357 dvdsfac 12366 bitsfzolem 12460 lcmgcdlem 12594 rpexp1i 12671 hashdvds 12738 hashgcdlem 12755 phisum 12758 pcqcl 12824 pcid 12842 ssnnctlemct 13012 issubmd 13502 grpinvnzcl 13600 mulgneg 13672 mulgnn0z 13681 01eq0ring 14147 lmss 14914 xmetrtri 15044 blssioo 15221 divcnap 15233 dedekindicc 15301 dvidlemap 15359 dvidrelem 15360 dvidsslem 15361 dvrecap 15381 dveflem 15394 lgsval3 15691 lgsdir2 15706 2sqlem6 15793 umgredg 15937 umgrpredgv 15939 umgredgne 15942 umgredgnlp 15944 usgredgppren 15989 edgssv2en 15991 uspgredg2vlem 16012 usgredg2vlem1 16014 bj-bdfindes 16270 bj-findes 16302 2omap 16318 |
| Copyright terms: Public domain | W3C validator |