| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 |
|
| sylan2b.2 |
|
| Ref | Expression |
|---|---|
| sylan2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylan2b.2 |
. 2
| |
| 4 | 2, 3 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 938 bm1.1 2190 eqtr3 2225 elnelne1 2480 elnelne2 2481 morex 2957 reuss2 3453 reupick 3457 rabsneu 3706 opabss 4108 triun 4155 poirr 4354 wepo 4406 wetrep 4407 rexxfrd 4510 reg3exmidlemwe 4627 nnsuc 4664 fnfco 5450 fun11iun 5543 fnressn 5770 fvpr1g 5790 fvtp1g 5792 fvtp3g 5794 fvtp3 5797 f1mpt 5840 caovlem2d 6139 offval 6166 dfoprab3 6277 1stconst 6307 2ndconst 6308 poxp 6318 tfrlemisucaccv 6411 tfr1onlemsucaccv 6427 tfrcllemsucaccv 6440 fiintim 7028 addclpi 7440 addnidpig 7449 reapmul1 8668 nnnn0addcl 9325 un0addcl 9328 un0mulcl 9329 zltnle 9418 nn0ge0div 9460 uzind3 9486 uzind4 9709 ltsubrp 9812 ltaddrp 9813 xrlttr 9917 xrltso 9918 xltnegi 9957 xaddnemnf 9979 xaddnepnf 9980 xaddcom 9983 xnegdi 9990 xsubge0 10003 fzind2 10368 qltnle 10386 qbtwnxr 10400 exp3vallem 10685 expp1 10691 expnegap0 10692 expcllem 10695 mulexpzap 10724 expaddzap 10728 expmulzap 10730 hashunlem 10949 shftf 11141 sqrtdiv 11353 mulcn2 11623 summodclem2 11693 fsum3 11698 cvgratz 11843 prodmodclem2 11888 zproddc 11890 prodsnf 11903 dvdsflip 12162 dvdsfac 12171 bitsfzolem 12265 lcmgcdlem 12399 rpexp1i 12476 hashdvds 12543 hashgcdlem 12560 phisum 12563 pcqcl 12629 pcid 12647 ssnnctlemct 12817 issubmd 13306 grpinvnzcl 13404 mulgneg 13476 mulgnn0z 13485 01eq0ring 13951 lmss 14718 xmetrtri 14848 blssioo 15025 divcnap 15037 dedekindicc 15105 dvidlemap 15163 dvidrelem 15164 dvidsslem 15165 dvrecap 15185 dveflem 15198 lgsval3 15495 lgsdir2 15510 2sqlem6 15597 bj-bdfindes 15885 bj-findes 15917 2omap 15932 |
| Copyright terms: Public domain | W3C validator |