ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnelne1 Unicode version

Theorem elnelne1 2468
Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne1  |-  ( ( A  e.  B  /\  A  e/  C )  ->  B  =/=  C )

Proof of Theorem elnelne1
StepHypRef Expression
1 df-nel 2460 . 2  |-  ( A  e/  C  <->  -.  A  e.  C )
2 nelne1 2454 . 2  |-  ( ( A  e.  B  /\  -.  A  e.  C
)  ->  B  =/=  C )
31, 2sylan2b 287 1  |-  ( ( A  e.  B  /\  A  e/  C )  ->  B  =/=  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2164    =/= wne 2364    e/ wnel 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189  df-ne 2365  df-nel 2460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator