ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnelne1 Unicode version

Theorem elnelne1 2440
Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne1  |-  ( ( A  e.  B  /\  A  e/  C )  ->  B  =/=  C )

Proof of Theorem elnelne1
StepHypRef Expression
1 df-nel 2432 . 2  |-  ( A  e/  C  <->  -.  A  e.  C )
2 nelne1 2426 . 2  |-  ( ( A  e.  B  /\  -.  A  e.  C
)  ->  B  =/=  C )
31, 2sylan2b 285 1  |-  ( ( A  e.  B  /\  A  e/  C )  ->  B  =/=  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 2136    =/= wne 2336    e/ wnel 2431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161  df-ne 2337  df-nel 2432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator