| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 |
|
| 3eqtr4a.2 |
|
| 3eqtr4a.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 |
. . 3
| |
| 2 | 3eqtr4a.1 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2254 |
. 2
|
| 4 | 3eqtr4a.3 |
. 2
| |
| 5 | 3, 4 | eqtr4d 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: uniintsnr 3921 fndmdifcom 5688 funopsn 5764 offres 6222 1stval2 6243 2ndval2 6244 ecovcom 6731 ecovass 6733 ecovdi 6735 nnnninfeq2 7233 zeo 9480 xnegneg 9957 xaddcom 9985 xaddid1 9986 xnegdi 9992 fzsuc2 10203 expnegap0 10694 facp1 10877 bcpasc 10913 hashfzp1 10971 resunimafz0 10978 ccat1st1st 11096 absexp 11423 iooinsup 11621 fsumf1o 11734 fsumadd 11750 fisumrev2 11790 fsumparts 11814 fprodf1o 11932 fprodmul 11935 efexp 12026 tanval2ap 12057 gcdcom 12327 gcd0id 12333 dfgcd3 12364 gcdass 12369 lcmcom 12419 lcmneg 12429 lcmass 12440 sqrt2irrlem 12516 nn0gcdsq 12555 dfphi2 12575 eulerthlemth 12587 pcneg 12681 setscom 12905 gsumfzfsumlem0 14381 restco 14679 txtopon 14767 dvmptid 15221 dvef 15232 fsumdvdsmul 15496 lgsneg 15534 lgsneg1 15535 lgsdir2 15543 lgsdir 15545 lgsdi 15547 lgsquad2lem2 15592 |
| Copyright terms: Public domain | W3C validator |