| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 |
|
| 3eqtr4a.2 |
|
| 3eqtr4a.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 |
. . 3
| |
| 2 | 3eqtr4a.1 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2245 |
. 2
|
| 4 | 3eqtr4a.3 |
. 2
| |
| 5 | 3, 4 | eqtr4d 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: uniintsnr 3911 fndmdifcom 5671 offres 6201 1stval2 6222 2ndval2 6223 ecovcom 6710 ecovass 6712 ecovdi 6714 nnnninfeq2 7204 zeo 9448 xnegneg 9925 xaddcom 9953 xaddid1 9954 xnegdi 9960 fzsuc2 10171 expnegap0 10656 facp1 10839 bcpasc 10875 hashfzp1 10933 resunimafz0 10940 absexp 11261 iooinsup 11459 fsumf1o 11572 fsumadd 11588 fisumrev2 11628 fsumparts 11652 fprodf1o 11770 fprodmul 11773 efexp 11864 tanval2ap 11895 gcdcom 12165 gcd0id 12171 dfgcd3 12202 gcdass 12207 lcmcom 12257 lcmneg 12267 lcmass 12278 sqrt2irrlem 12354 nn0gcdsq 12393 dfphi2 12413 eulerthlemth 12425 pcneg 12519 setscom 12743 gsumfzfsumlem0 14218 restco 14494 txtopon 14582 dvmptid 15036 dvef 15047 fsumdvdsmul 15311 lgsneg 15349 lgsneg1 15350 lgsdir2 15358 lgsdir 15360 lgsdi 15362 lgsquad2lem2 15407 |
| Copyright terms: Public domain | W3C validator |