Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4a.1 | |
3eqtr4a.2 | |
3eqtr4a.3 |
Ref | Expression |
---|---|
3eqtr4a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4a.2 | . . 3 | |
2 | 3eqtr4a.1 | . . 3 | |
3 | 1, 2 | eqtrdi 2219 | . 2 |
4 | 3eqtr4a.3 | . 2 | |
5 | 3, 4 | eqtr4d 2206 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: uniintsnr 3867 fndmdifcom 5602 offres 6114 1stval2 6134 2ndval2 6135 ecovcom 6620 ecovass 6622 ecovdi 6624 nnnninfeq2 7105 zeo 9317 xnegneg 9790 xaddcom 9818 xaddid1 9819 xnegdi 9825 fzsuc2 10035 expnegap0 10484 facp1 10664 bcpasc 10700 hashfzp1 10759 resunimafz0 10766 absexp 11043 iooinsup 11240 fsumf1o 11353 fsumadd 11369 fisumrev2 11409 fsumparts 11433 fprodf1o 11551 fprodmul 11554 efexp 11645 tanval2ap 11676 gcdcom 11928 gcd0id 11934 dfgcd3 11965 gcdass 11970 lcmcom 12018 lcmneg 12028 lcmass 12039 sqrt2irrlem 12115 nn0gcdsq 12154 dfphi2 12174 eulerthlemth 12186 pcneg 12278 setscom 12456 restco 12968 txtopon 13056 dvef 13482 lgsneg 13719 lgsneg1 13720 lgsdir2 13728 lgsdir 13730 lgsdi 13732 |
Copyright terms: Public domain | W3C validator |