| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 |
|
| 3eqtr4a.2 |
|
| 3eqtr4a.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 |
. . 3
| |
| 2 | 3eqtr4a.1 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2278 |
. 2
|
| 4 | 3eqtr4a.3 |
. 2
| |
| 5 | 3, 4 | eqtr4d 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: uniintsnr 3959 fndmdifcom 5741 funopsn 5817 offres 6280 1stval2 6301 2ndval2 6302 ecovcom 6789 ecovass 6791 ecovdi 6793 nnnninfeq2 7296 zeo 9552 xnegneg 10029 xaddcom 10057 xaddid1 10058 xnegdi 10064 fzsuc2 10275 expnegap0 10769 facp1 10952 bcpasc 10988 hashfzp1 11046 resunimafz0 11053 ccat1st1st 11172 absexp 11590 iooinsup 11788 fsumf1o 11901 fsumadd 11917 fisumrev2 11957 fsumparts 11981 fprodf1o 12099 fprodmul 12102 efexp 12193 tanval2ap 12224 gcdcom 12494 gcd0id 12500 dfgcd3 12531 gcdass 12536 lcmcom 12586 lcmneg 12596 lcmass 12607 sqrt2irrlem 12683 nn0gcdsq 12722 dfphi2 12742 eulerthlemth 12754 pcneg 12848 setscom 13072 gsumfzfsumlem0 14550 restco 14848 txtopon 14936 dvmptid 15390 dvef 15401 fsumdvdsmul 15665 lgsneg 15703 lgsneg1 15704 lgsdir2 15712 lgsdir 15714 lgsdi 15716 lgsquad2lem2 15761 |
| Copyright terms: Public domain | W3C validator |