| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| 3eqtr4a.1 | 
 | 
| 3eqtr4a.2 | 
 | 
| 3eqtr4a.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3eqtr4a | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3eqtr4a.2 | 
. . 3
 | |
| 2 | 3eqtr4a.1 | 
. . 3
 | |
| 3 | 1, 2 | eqtrdi 2245 | 
. 2
 | 
| 4 | 3eqtr4a.3 | 
. 2
 | |
| 5 | 3, 4 | eqtr4d 2232 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: uniintsnr 3910 fndmdifcom 5668 offres 6192 1stval2 6213 2ndval2 6214 ecovcom 6701 ecovass 6703 ecovdi 6705 nnnninfeq2 7195 zeo 9431 xnegneg 9908 xaddcom 9936 xaddid1 9937 xnegdi 9943 fzsuc2 10154 expnegap0 10639 facp1 10822 bcpasc 10858 hashfzp1 10916 resunimafz0 10923 absexp 11244 iooinsup 11442 fsumf1o 11555 fsumadd 11571 fisumrev2 11611 fsumparts 11635 fprodf1o 11753 fprodmul 11756 efexp 11847 tanval2ap 11878 gcdcom 12140 gcd0id 12146 dfgcd3 12177 gcdass 12182 lcmcom 12232 lcmneg 12242 lcmass 12253 sqrt2irrlem 12329 nn0gcdsq 12368 dfphi2 12388 eulerthlemth 12400 pcneg 12494 setscom 12718 gsumfzfsumlem0 14142 restco 14410 txtopon 14498 dvmptid 14952 dvef 14963 fsumdvdsmul 15227 lgsneg 15265 lgsneg1 15266 lgsdir2 15274 lgsdir 15276 lgsdi 15278 lgsquad2lem2 15323 | 
| Copyright terms: Public domain | W3C validator |