| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 |
|
| 3eqtr4a.2 |
|
| 3eqtr4a.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 |
. . 3
| |
| 2 | 3eqtr4a.1 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2245 |
. 2
|
| 4 | 3eqtr4a.3 |
. 2
| |
| 5 | 3, 4 | eqtr4d 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: uniintsnr 3911 fndmdifcom 5669 offres 6193 1stval2 6214 2ndval2 6215 ecovcom 6702 ecovass 6704 ecovdi 6706 nnnninfeq2 7196 zeo 9433 xnegneg 9910 xaddcom 9938 xaddid1 9939 xnegdi 9945 fzsuc2 10156 expnegap0 10641 facp1 10824 bcpasc 10860 hashfzp1 10918 resunimafz0 10925 absexp 11246 iooinsup 11444 fsumf1o 11557 fsumadd 11573 fisumrev2 11613 fsumparts 11637 fprodf1o 11755 fprodmul 11758 efexp 11849 tanval2ap 11880 gcdcom 12150 gcd0id 12156 dfgcd3 12187 gcdass 12192 lcmcom 12242 lcmneg 12252 lcmass 12263 sqrt2irrlem 12339 nn0gcdsq 12378 dfphi2 12398 eulerthlemth 12410 pcneg 12504 setscom 12728 gsumfzfsumlem0 14152 restco 14420 txtopon 14508 dvmptid 14962 dvef 14973 fsumdvdsmul 15237 lgsneg 15275 lgsneg1 15276 lgsdir2 15284 lgsdir 15286 lgsdi 15288 lgsquad2lem2 15333 |
| Copyright terms: Public domain | W3C validator |