| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 |
|
| 3eqtr4a.2 |
|
| 3eqtr4a.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 |
. . 3
| |
| 2 | 3eqtr4a.1 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2254 |
. 2
|
| 4 | 3eqtr4a.3 |
. 2
| |
| 5 | 3, 4 | eqtr4d 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: uniintsnr 3921 fndmdifcom 5686 funopsn 5762 offres 6220 1stval2 6241 2ndval2 6242 ecovcom 6729 ecovass 6731 ecovdi 6733 nnnninfeq2 7231 zeo 9478 xnegneg 9955 xaddcom 9983 xaddid1 9984 xnegdi 9990 fzsuc2 10201 expnegap0 10692 facp1 10875 bcpasc 10911 hashfzp1 10969 resunimafz0 10976 ccat1st1st 11093 absexp 11390 iooinsup 11588 fsumf1o 11701 fsumadd 11717 fisumrev2 11757 fsumparts 11781 fprodf1o 11899 fprodmul 11902 efexp 11993 tanval2ap 12024 gcdcom 12294 gcd0id 12300 dfgcd3 12331 gcdass 12336 lcmcom 12386 lcmneg 12396 lcmass 12407 sqrt2irrlem 12483 nn0gcdsq 12522 dfphi2 12542 eulerthlemth 12554 pcneg 12648 setscom 12872 gsumfzfsumlem0 14348 restco 14646 txtopon 14734 dvmptid 15188 dvef 15199 fsumdvdsmul 15463 lgsneg 15501 lgsneg1 15502 lgsdir2 15510 lgsdir 15512 lgsdi 15514 lgsquad2lem2 15559 |
| Copyright terms: Public domain | W3C validator |