![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4a.1 |
![]() ![]() ![]() ![]() |
3eqtr4a.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4a.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr4a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4a.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtr4a.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrdi 2226 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr4a.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr4d 2213 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: uniintsnr 3882 fndmdifcom 5624 offres 6138 1stval2 6158 2ndval2 6159 ecovcom 6644 ecovass 6646 ecovdi 6648 nnnninfeq2 7129 zeo 9360 xnegneg 9835 xaddcom 9863 xaddid1 9864 xnegdi 9870 fzsuc2 10081 expnegap0 10530 facp1 10712 bcpasc 10748 hashfzp1 10806 resunimafz0 10813 absexp 11090 iooinsup 11287 fsumf1o 11400 fsumadd 11416 fisumrev2 11456 fsumparts 11480 fprodf1o 11598 fprodmul 11601 efexp 11692 tanval2ap 11723 gcdcom 11976 gcd0id 11982 dfgcd3 12013 gcdass 12018 lcmcom 12066 lcmneg 12076 lcmass 12087 sqrt2irrlem 12163 nn0gcdsq 12202 dfphi2 12222 eulerthlemth 12234 pcneg 12326 setscom 12504 restco 13713 txtopon 13801 dvef 14227 lgsneg 14464 lgsneg1 14465 lgsdir2 14473 lgsdir 14475 lgsdi 14477 |
Copyright terms: Public domain | W3C validator |