![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4a.1 |
![]() ![]() ![]() ![]() |
3eqtr4a.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4a.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr4a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4a.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtr4a.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrdi 2242 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr4a.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr4d 2229 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: uniintsnr 3907 fndmdifcom 5665 offres 6189 1stval2 6210 2ndval2 6211 ecovcom 6698 ecovass 6700 ecovdi 6702 nnnninfeq2 7190 zeo 9425 xnegneg 9902 xaddcom 9930 xaddid1 9931 xnegdi 9937 fzsuc2 10148 expnegap0 10621 facp1 10804 bcpasc 10840 hashfzp1 10898 resunimafz0 10905 absexp 11226 iooinsup 11423 fsumf1o 11536 fsumadd 11552 fisumrev2 11592 fsumparts 11616 fprodf1o 11734 fprodmul 11737 efexp 11828 tanval2ap 11859 gcdcom 12113 gcd0id 12119 dfgcd3 12150 gcdass 12155 lcmcom 12205 lcmneg 12215 lcmass 12226 sqrt2irrlem 12302 nn0gcdsq 12341 dfphi2 12361 eulerthlemth 12373 pcneg 12466 setscom 12661 gsumfzfsumlem0 14085 restco 14353 txtopon 14441 dvmptid 14895 dvef 14906 lgsneg 15181 lgsneg1 15182 lgsdir2 15190 lgsdir 15192 lgsdi 15194 lgsquad2lem2 15239 |
Copyright terms: Public domain | W3C validator |