Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4a.1 | |
3eqtr4a.2 | |
3eqtr4a.3 |
Ref | Expression |
---|---|
3eqtr4a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4a.2 | . . 3 | |
2 | 3eqtr4a.1 | . . 3 | |
3 | 1, 2 | eqtrdi 2214 | . 2 |
4 | 3eqtr4a.3 | . 2 | |
5 | 3, 4 | eqtr4d 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: uniintsnr 3859 fndmdifcom 5590 offres 6100 1stval2 6120 2ndval2 6121 ecovcom 6604 ecovass 6606 ecovdi 6608 nnnninfeq2 7089 zeo 9292 xnegneg 9765 xaddcom 9793 xaddid1 9794 xnegdi 9800 fzsuc2 10010 expnegap0 10459 facp1 10639 bcpasc 10675 hashfzp1 10733 resunimafz0 10740 absexp 11017 iooinsup 11214 fsumf1o 11327 fsumadd 11343 fisumrev2 11383 fsumparts 11407 fprodf1o 11525 fprodmul 11528 efexp 11619 tanval2ap 11650 gcdcom 11902 gcd0id 11908 dfgcd3 11939 gcdass 11944 lcmcom 11992 lcmneg 12002 lcmass 12013 sqrt2irrlem 12089 nn0gcdsq 12128 dfphi2 12148 eulerthlemth 12160 pcneg 12252 setscom 12430 restco 12774 txtopon 12862 dvef 13288 lgsneg 13525 lgsneg1 13526 lgsdir2 13534 lgsdir 13536 lgsdi 13538 |
Copyright terms: Public domain | W3C validator |