| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | Unicode version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 |
|
| 3eqtr4a.2 |
|
| 3eqtr4a.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 |
. . 3
| |
| 2 | 3eqtr4a.1 |
. . 3
| |
| 3 | 1, 2 | eqtrdi 2256 |
. 2
|
| 4 | 3eqtr4a.3 |
. 2
| |
| 5 | 3, 4 | eqtr4d 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: uniintsnr 3935 fndmdifcom 5709 funopsn 5785 offres 6243 1stval2 6264 2ndval2 6265 ecovcom 6752 ecovass 6754 ecovdi 6756 nnnninfeq2 7257 zeo 9513 xnegneg 9990 xaddcom 10018 xaddid1 10019 xnegdi 10025 fzsuc2 10236 expnegap0 10729 facp1 10912 bcpasc 10948 hashfzp1 11006 resunimafz0 11013 ccat1st1st 11131 absexp 11505 iooinsup 11703 fsumf1o 11816 fsumadd 11832 fisumrev2 11872 fsumparts 11896 fprodf1o 12014 fprodmul 12017 efexp 12108 tanval2ap 12139 gcdcom 12409 gcd0id 12415 dfgcd3 12446 gcdass 12451 lcmcom 12501 lcmneg 12511 lcmass 12522 sqrt2irrlem 12598 nn0gcdsq 12637 dfphi2 12657 eulerthlemth 12669 pcneg 12763 setscom 12987 gsumfzfsumlem0 14463 restco 14761 txtopon 14849 dvmptid 15303 dvef 15314 fsumdvdsmul 15578 lgsneg 15616 lgsneg1 15617 lgsdir2 15625 lgsdir 15627 lgsdi 15629 lgsquad2lem2 15674 |
| Copyright terms: Public domain | W3C validator |