![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1w | Unicode version |
Description: Weaker version of eleq1 2150 (but more general than elequ1 1647) not depending on ax-ext 2070 nor df-cleq 2081. (Contributed by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
eleq1w |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 1646 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1d 453 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | exbidv 1753 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-clel 2084 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | df-clel 2084 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | 3bitr4g 221 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-clel 2084 |
This theorem is referenced by: clelsb3f 2232 dfdif3 3110 dfss4st 3232 abn0m 3308 cbvmptf 3932 mapsnen 6526 exmidomni 6796 fodjuomnilemm 6799 iseqf1olemqk 9919 seq3f1olemqsum 9925 isummolem2 10768 isummo 10769 zisum 10770 fisum 10774 isumz 10777 isumss 10779 fisumss 10780 isumss2 10781 fisumcvg2 10782 fsum3cvg2 10783 fisumsers 10784 fisumser 10786 fsumsplit 10797 fsumsplitf 10798 isumlessdc 10886 nninfalllemn 11853 |
Copyright terms: Public domain | W3C validator |