| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 |
|
| 3bitr3i.2 |
|
| 3bitr3i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 |
. . 3
| |
| 2 | 3bitr3i.1 |
. . 3
| |
| 3 | 1, 2 | bitr3i 186 |
. 2
|
| 4 | 3bitr3i.3 |
. 2
| |
| 5 | 3, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an12 561 cbval2 1945 cbvex2 1946 cbvaldvaw 1954 sbco2vh 1973 equsb3 1979 sbn 1980 sbim 1981 sbor 1982 sban 1983 sbco2h 1992 sbco2d 1994 sbco2vd 1995 sbcomv 1999 sbco3 2002 sbcom 2003 sbcom2v 2013 sbcom2v2 2014 sbcom2 2015 dfsb7 2019 sb7f 2020 sb7af 2021 sbal 2028 sbex 2032 sbco4lem 2034 moanim 2128 eq2tri 2265 eqsb1 2309 clelsb1 2310 clelsb2 2311 clelsb1f 2352 ralcom4 2794 rexcom4 2795 ceqsralt 2799 gencbvex 2819 gencbval 2821 ceqsrexbv 2904 euind 2960 reuind 2978 sbccomlem 3073 sbccom 3074 raaan 3566 elxp2 4693 eqbrriv 4770 dm0rn0 4895 dfres2 5011 qfto 5072 xpm 5104 rninxp 5126 fununi 5342 dfoprab2 5992 dfer2 6621 euen1 6894 xpsnen 6916 xpassen 6925 enq0enq 7544 prnmaxl 7601 prnminu 7602 suplocexprlemell 7826 |
| Copyright terms: Public domain | W3C validator |