![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr3i | Unicode version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr3i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr3i.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr3i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr3i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr3i 186 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr3i.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an12 561 cbval2 1933 cbvex2 1934 cbvaldvaw 1942 sbco2vh 1961 equsb3 1967 sbn 1968 sbim 1969 sbor 1970 sban 1971 sbco2h 1980 sbco2d 1982 sbco2vd 1983 sbcomv 1987 sbco3 1990 sbcom 1991 sbcom2v 2001 sbcom2v2 2002 sbcom2 2003 dfsb7 2007 sb7f 2008 sb7af 2009 sbal 2016 sbex 2020 sbco4lem 2022 moanim 2116 eq2tri 2253 eqsb1 2297 clelsb1 2298 clelsb2 2299 clelsb1f 2340 ralcom4 2782 rexcom4 2783 ceqsralt 2787 gencbvex 2806 gencbval 2808 ceqsrexbv 2891 euind 2947 reuind 2965 sbccomlem 3060 sbccom 3061 raaan 3552 elxp2 4677 eqbrriv 4754 dm0rn0 4879 dfres2 4994 qfto 5055 xpm 5087 rninxp 5109 fununi 5322 dfoprab2 5965 dfer2 6588 euen1 6856 xpsnen 6875 xpassen 6884 enq0enq 7491 prnmaxl 7548 prnminu 7549 suplocexprlemell 7773 |
Copyright terms: Public domain | W3C validator |