ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3i Unicode version

Theorem 3bitr3i 210
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.)
Hypotheses
Ref Expression
3bitr3i.1  |-  ( ph  <->  ps )
3bitr3i.2  |-  ( ph  <->  ch )
3bitr3i.3  |-  ( ps  <->  th )
Assertion
Ref Expression
3bitr3i  |-  ( ch  <->  th )

Proof of Theorem 3bitr3i
StepHypRef Expression
1 3bitr3i.2 . . 3  |-  ( ph  <->  ch )
2 3bitr3i.1 . . 3  |-  ( ph  <->  ps )
31, 2bitr3i 186 . 2  |-  ( ch  <->  ps )
4 3bitr3i.3 . 2  |-  ( ps  <->  th )
53, 4bitri 184 1  |-  ( ch  <->  th )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an12  561  cbval2  1933  cbvex2  1934  cbvaldvaw  1942  sbco2vh  1961  equsb3  1967  sbn  1968  sbim  1969  sbor  1970  sban  1971  sbco2h  1980  sbco2d  1982  sbco2vd  1983  sbcomv  1987  sbco3  1990  sbcom  1991  sbcom2v  2001  sbcom2v2  2002  sbcom2  2003  dfsb7  2007  sb7f  2008  sb7af  2009  sbal  2016  sbex  2020  sbco4lem  2022  moanim  2116  eq2tri  2253  eqsb1  2297  clelsb1  2298  clelsb2  2299  clelsb1f  2340  ralcom4  2782  rexcom4  2783  ceqsralt  2787  gencbvex  2807  gencbval  2809  ceqsrexbv  2892  euind  2948  reuind  2966  sbccomlem  3061  sbccom  3062  raaan  3553  elxp2  4678  eqbrriv  4755  dm0rn0  4880  dfres2  4995  qfto  5056  xpm  5088  rninxp  5110  fununi  5323  dfoprab2  5966  dfer2  6590  euen1  6858  xpsnen  6877  xpassen  6886  enq0enq  7493  prnmaxl  7550  prnminu  7551  suplocexprlemell  7775
  Copyright terms: Public domain W3C validator