| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 |
|
| 3bitr3i.2 |
|
| 3bitr3i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 |
. . 3
| |
| 2 | 3bitr3i.1 |
. . 3
| |
| 3 | 1, 2 | bitr3i 186 |
. 2
|
| 4 | 3bitr3i.3 |
. 2
| |
| 5 | 3, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an12 561 cbval2 1946 cbvex2 1947 cbvaldvaw 1955 sbco2vh 1974 equsb3 1980 sbn 1981 sbim 1982 sbor 1983 sban 1984 sbco2h 1993 sbco2d 1995 sbco2vd 1996 sbcomv 2000 sbco3 2003 sbcom 2004 sbcom2v 2014 sbcom2v2 2015 sbcom2 2016 dfsb7 2020 sb7f 2021 sb7af 2022 sbal 2029 sbex 2033 sbco4lem 2035 moanim 2130 eq2tri 2267 eqsb1 2311 clelsb1 2312 clelsb2 2313 clelsb1f 2354 ralcom4 2799 rexcom4 2800 ceqsralt 2804 gencbvex 2824 gencbval 2826 ceqsrexbv 2911 euind 2967 reuind 2985 sbccomlem 3080 sbccom 3081 raaan 3574 elxp2 4711 eqbrriv 4788 dm0rn0 4914 dfres2 5030 qfto 5091 xpm 5123 rninxp 5145 fununi 5361 dfoprab2 6015 dfer2 6644 euen1 6917 xpsnen 6941 xpassen 6950 enq0enq 7579 prnmaxl 7636 prnminu 7637 suplocexprlemell 7861 |
| Copyright terms: Public domain | W3C validator |