ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotaplemap Unicode version

Theorem 2omotaplemap 7317
Description: Lemma for 2omotap 7319. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotaplemap  |-  ( -. 
-.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp  2o )
Distinct variable group:    ph, u, v

Proof of Theorem 2omotaplemap
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opabssxp 4733 . . 3  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  C_  ( 2o  X.  2o )
21a1i 9 . 2  |-  ( -. 
-.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  C_  ( 2o  X.  2o ) )
3 df-br 4030 . . . . . . . 8  |-  ( a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  <->  <. a ,  b
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } )
4 neeq1 2377 . . . . . . . . . 10  |-  ( u  =  a  ->  (
u  =/=  v  <->  a  =/=  v ) )
54anbi2d 464 . . . . . . . . 9  |-  ( u  =  a  ->  (
( ph  /\  u  =/=  v )  <->  ( ph  /\  a  =/=  v ) ) )
6 neeq2 2378 . . . . . . . . . 10  |-  ( v  =  b  ->  (
a  =/=  v  <->  a  =/=  b ) )
76anbi2d 464 . . . . . . . . 9  |-  ( v  =  b  ->  (
( ph  /\  a  =/=  v )  <->  ( ph  /\  a  =/=  b ) ) )
85, 7opelopab2 4301 . . . . . . . 8  |-  ( ( a  e.  2o  /\  b  e.  2o )  ->  ( <. a ,  b
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <->  ( ph  /\  a  =/=  b ) ) )
93, 8bitrid 192 . . . . . . 7  |-  ( ( a  e.  2o  /\  b  e.  2o )  ->  ( a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  <->  ( ph  /\  a  =/=  b ) ) )
10 df-br 4030 . . . . . . . 8  |-  ( b { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a  <->  <. b ,  a
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } )
11 neeq1 2377 . . . . . . . . . . . 12  |-  ( u  =  b  ->  (
u  =/=  v  <->  b  =/=  v ) )
1211anbi2d 464 . . . . . . . . . . 11  |-  ( u  =  b  ->  (
( ph  /\  u  =/=  v )  <->  ( ph  /\  b  =/=  v ) ) )
13 neeq2 2378 . . . . . . . . . . . 12  |-  ( v  =  a  ->  (
b  =/=  v  <->  b  =/=  a ) )
1413anbi2d 464 . . . . . . . . . . 11  |-  ( v  =  a  ->  (
( ph  /\  b  =/=  v )  <->  ( ph  /\  b  =/=  a ) ) )
1512, 14opelopab2 4301 . . . . . . . . . 10  |-  ( ( b  e.  2o  /\  a  e.  2o )  ->  ( <. b ,  a
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <->  ( ph  /\  b  =/=  a ) ) )
1615ancoms 268 . . . . . . . . 9  |-  ( ( a  e.  2o  /\  b  e.  2o )  ->  ( <. b ,  a
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <->  ( ph  /\  b  =/=  a ) ) )
17 necom 2448 . . . . . . . . . 10  |-  ( b  =/=  a  <->  a  =/=  b )
1817anbi2i 457 . . . . . . . . 9  |-  ( (
ph  /\  b  =/=  a )  <->  ( ph  /\  a  =/=  b ) )
1916, 18bitrdi 196 . . . . . . . 8  |-  ( ( a  e.  2o  /\  b  e.  2o )  ->  ( <. b ,  a
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <->  ( ph  /\  a  =/=  b ) ) )
2010, 19bitrid 192 . . . . . . 7  |-  ( ( a  e.  2o  /\  b  e.  2o )  ->  ( b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a  <->  ( ph  /\  a  =/=  b ) ) )
219, 20bitr4d 191 . . . . . 6  |-  ( ( a  e.  2o  /\  b  e.  2o )  ->  ( a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  <->  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } a ) )
2221biimpd 144 . . . . 5  |-  ( ( a  e.  2o  /\  b  e.  2o )  ->  ( a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  ->  b { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a ) )
2322rgen2 2580 . . . 4  |-  A. a  e.  2o  A. b  e.  2o  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } b  ->  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a )
2423a1i 9 . . 3  |-  ( -. 
-.  ph  ->  A. a  e.  2o  A. b  e.  2o  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } b  ->  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a ) )
25 neirr 2373 . . . . . 6  |-  -.  a  =/=  a
2625intnan 930 . . . . 5  |-  -.  ( ph  /\  a  =/=  a
)
27 df-br 4030 . . . . . 6  |-  ( a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a  <->  <. a ,  a
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } )
28 neeq2 2378 . . . . . . . . 9  |-  ( v  =  a  ->  (
a  =/=  v  <->  a  =/=  a ) )
2928anbi2d 464 . . . . . . . 8  |-  ( v  =  a  ->  (
( ph  /\  a  =/=  v )  <->  ( ph  /\  a  =/=  a ) ) )
305, 29opelopab2 4301 . . . . . . 7  |-  ( ( a  e.  2o  /\  a  e.  2o )  ->  ( <. a ,  a
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <->  ( ph  /\  a  =/=  a ) ) )
3130anidms 397 . . . . . 6  |-  ( a  e.  2o  ->  ( <. a ,  a >.  e.  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <-> 
( ph  /\  a  =/=  a ) ) )
3227, 31bitrid 192 . . . . 5  |-  ( a  e.  2o  ->  (
a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a  <->  ( ph  /\  a  =/=  a ) ) )
3326, 32mtbiri 676 . . . 4  |-  ( a  e.  2o  ->  -.  a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a )
3433rgen 2547 . . 3  |-  A. a  e.  2o  -.  a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } a
3524, 34jctil 312 . 2  |-  ( -. 
-.  ph  ->  ( A. a  e.  2o  -.  a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a  /\  A. a  e.  2o  A. b  e.  2o  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } b  ->  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a ) ) )
3693adant3 1019 . . . . . 6  |-  ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  ->  (
a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  <->  ( ph  /\  a  =/=  b ) ) )
37 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b
) )  /\  a  =  c )  -> 
a  =  c )
38 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b
) )  /\  a  =  c )  -> 
a  =/=  b )
3937, 38eqnetrrd 2390 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b
) )  /\  a  =  c )  -> 
c  =/=  b )
4039necomd 2450 . . . . . . . . . 10  |-  ( ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b
) )  /\  a  =  c )  -> 
b  =/=  c )
4140olcd 735 . . . . . . . . 9  |-  ( ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b
) )  /\  a  =  c )  -> 
( a  =/=  c  \/  b  =/=  c
) )
42 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b
) )  /\  -.  a  =  c )  ->  -.  a  =  c )
4342neqned 2371 . . . . . . . . . 10  |-  ( ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b
) )  /\  -.  a  =  c )  ->  a  =/=  c )
4443orcd 734 . . . . . . . . 9  |-  ( ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b
) )  /\  -.  a  =  c )  ->  ( a  =/=  c  \/  b  =/=  c
) )
45 simpl1 1002 . . . . . . . . . . . 12  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
a  e.  2o )
46 2onn 6574 . . . . . . . . . . . 12  |-  2o  e.  om
47 elnn 4638 . . . . . . . . . . . 12  |-  ( ( a  e.  2o  /\  2o  e.  om )  -> 
a  e.  om )
4845, 46, 47sylancl 413 . . . . . . . . . . 11  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
a  e.  om )
49 simpl3 1004 . . . . . . . . . . . 12  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
c  e.  2o )
50 elnn 4638 . . . . . . . . . . . 12  |-  ( ( c  e.  2o  /\  2o  e.  om )  -> 
c  e.  om )
5149, 46, 50sylancl 413 . . . . . . . . . . 11  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
c  e.  om )
52 nndceq 6552 . . . . . . . . . . 11  |-  ( ( a  e.  om  /\  c  e.  om )  -> DECID  a  =  c )
5348, 51, 52syl2anc 411 . . . . . . . . . 10  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> DECID  a  =  c )
54 exmiddc 837 . . . . . . . . . 10  |-  (DECID  a  =  c  ->  ( a  =  c  \/  -.  a  =  c )
)
5553, 54syl 14 . . . . . . . . 9  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( a  =  c  \/  -.  a  =  c ) )
5641, 44, 55mpjaodan 799 . . . . . . . 8  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( a  =/=  c  \/  b  =/=  c
) )
57 df-br 4030 . . . . . . . . . . . 12  |-  ( a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  <->  <. a ,  c
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } )
58 neeq2 2378 . . . . . . . . . . . . . . 15  |-  ( v  =  c  ->  (
a  =/=  v  <->  a  =/=  c ) )
5958anbi2d 464 . . . . . . . . . . . . . 14  |-  ( v  =  c  ->  (
( ph  /\  a  =/=  v )  <->  ( ph  /\  a  =/=  c ) ) )
605, 59opelopab2 4301 . . . . . . . . . . . . 13  |-  ( ( a  e.  2o  /\  c  e.  2o )  ->  ( <. a ,  c
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <->  ( ph  /\  a  =/=  c ) ) )
61603adant2 1018 . . . . . . . . . . . 12  |-  ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  ->  ( <. a ,  c >.  e.  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <-> 
( ph  /\  a  =/=  c ) ) )
6257, 61bitrid 192 . . . . . . . . . . 11  |-  ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  ->  (
a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  <->  ( ph  /\  a  =/=  c ) ) )
6362adantr 276 . . . . . . . . . 10  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  <->  ( ph  /\  a  =/=  c ) ) )
64 ibar 301 . . . . . . . . . . . 12  |-  ( ph  ->  ( a  =/=  c  <->  (
ph  /\  a  =/=  c ) ) )
6564adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  a  =/=  b )  ->  (
a  =/=  c  <->  ( ph  /\  a  =/=  c ) ) )
6665adantl 277 . . . . . . . . . 10  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( a  =/=  c  <->  (
ph  /\  a  =/=  c ) ) )
6763, 66bitr4d 191 . . . . . . . . 9  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  <->  a  =/=  c ) )
68 df-br 4030 . . . . . . . . . . . 12  |-  ( b { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  <->  <. b ,  c
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } )
69 neeq2 2378 . . . . . . . . . . . . . . 15  |-  ( v  =  c  ->  (
b  =/=  v  <->  b  =/=  c ) )
7069anbi2d 464 . . . . . . . . . . . . . 14  |-  ( v  =  c  ->  (
( ph  /\  b  =/=  v )  <->  ( ph  /\  b  =/=  c ) ) )
7112, 70opelopab2 4301 . . . . . . . . . . . . 13  |-  ( ( b  e.  2o  /\  c  e.  2o )  ->  ( <. b ,  c
>.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <->  ( ph  /\  b  =/=  c ) ) )
72713adant1 1017 . . . . . . . . . . . 12  |-  ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  ->  ( <. b ,  c >.  e.  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  <-> 
( ph  /\  b  =/=  c ) ) )
7368, 72bitrid 192 . . . . . . . . . . 11  |-  ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  ->  (
b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  <->  ( ph  /\  b  =/=  c ) ) )
7473adantr 276 . . . . . . . . . 10  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  <->  ( ph  /\  b  =/=  c ) ) )
75 ibar 301 . . . . . . . . . . . 12  |-  ( ph  ->  ( b  =/=  c  <->  (
ph  /\  b  =/=  c ) ) )
7675adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  a  =/=  b )  ->  (
b  =/=  c  <->  ( ph  /\  b  =/=  c ) ) )
7776adantl 277 . . . . . . . . . 10  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( b  =/=  c  <->  (
ph  /\  b  =/=  c ) ) )
7874, 77bitr4d 191 . . . . . . . . 9  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  <->  b  =/=  c ) )
7967, 78orbi12d 794 . . . . . . . 8  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } c  \/  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c )  <->  ( a  =/=  c  \/  b  =/=  c ) ) )
8056, 79mpbird 167 . . . . . . 7  |-  ( ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  /\  ( ph  /\  a  =/=  b ) )  -> 
( a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  \/  b { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c ) )
8180ex 115 . . . . . 6  |-  ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  ->  (
( ph  /\  a  =/=  b )  ->  (
a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  \/  b { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c ) ) )
8236, 81sylbid 150 . . . . 5  |-  ( ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )  ->  (
a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  ->  (
a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  \/  b { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c ) ) )
8382adantl 277 . . . 4  |-  ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o  /\  c  e.  2o )
)  ->  ( a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  ->  ( a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c  \/  b {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } c ) ) )
8483ralrimivvva 2577 . . 3  |-  ( -. 
-.  ph  ->  A. a  e.  2o  A. b  e.  2o  A. c  e.  2o  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } b  ->  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } c  \/  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c ) ) )
859notbid 668 . . . . . 6  |-  ( ( a  e.  2o  /\  b  e.  2o )  ->  ( -.  a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } b  <->  -.  ( ph  /\  a  =/=  b ) ) )
8685adantl 277 . . . . 5  |-  ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  ->  ( -.  a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  <->  -.  ( ph  /\  a  =/=  b ) ) )
87 simpll 527 . . . . . . . 8  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  -.  -.  ph )
88 simpr 110 . . . . . . . . . 10  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  -.  ( ph  /\  a  =/=  b ) )
89 ancom 266 . . . . . . . . . 10  |-  ( (
ph  /\  a  =/=  b )  <->  ( a  =/=  b  /\  ph )
)
9088, 89sylnib 677 . . . . . . . . 9  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  -.  ( a  =/=  b  /\  ph ) )
91 imnan 691 . . . . . . . . 9  |-  ( ( a  =/=  b  ->  -.  ph )  <->  -.  (
a  =/=  b  /\  ph ) )
9290, 91sylibr 134 . . . . . . . 8  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  (
a  =/=  b  ->  -.  ph ) )
9387, 92mtod 664 . . . . . . 7  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  -.  a  =/=  b )
94 simplrl 535 . . . . . . . . . 10  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  a  e.  2o )
9594, 46, 47sylancl 413 . . . . . . . . 9  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  a  e.  om )
96 simplrr 536 . . . . . . . . . 10  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  b  e.  2o )
97 elnn 4638 . . . . . . . . . 10  |-  ( ( b  e.  2o  /\  2o  e.  om )  -> 
b  e.  om )
9896, 46, 97sylancl 413 . . . . . . . . 9  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  b  e.  om )
99 nndceq 6552 . . . . . . . . 9  |-  ( ( a  e.  om  /\  b  e.  om )  -> DECID  a  =  b )
10095, 98, 99syl2anc 411 . . . . . . . 8  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  -> DECID  a  =  b
)
101 nnedc 2369 . . . . . . . 8  |-  (DECID  a  =  b  ->  ( -.  a  =/=  b  <->  a  =  b ) )
102100, 101syl 14 . . . . . . 7  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  ( -.  a  =/=  b  <->  a  =  b ) )
10393, 102mpbid 147 . . . . . 6  |-  ( ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  /\  -.  ( ph  /\  a  =/=  b
) )  ->  a  =  b )
104103ex 115 . . . . 5  |-  ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  ->  ( -.  ( ph  /\  a  =/=  b )  ->  a  =  b ) )
10586, 104sylbid 150 . . . 4  |-  ( ( -.  -.  ph  /\  ( a  e.  2o  /\  b  e.  2o ) )  ->  ( -.  a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  ->  a  =  b ) )
106105ralrimivva 2576 . . 3  |-  ( -. 
-.  ph  ->  A. a  e.  2o  A. b  e.  2o  ( -.  a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  ->  a  =  b ) )
10784, 106jca 306 . 2  |-  ( -. 
-.  ph  ->  ( A. a  e.  2o  A. b  e.  2o  A. c  e.  2o  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } b  ->  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } c  \/  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c ) )  /\  A. a  e.  2o  A. b  e.  2o  ( -.  a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  ->  a  =  b ) ) )
108 dftap2 7311 . 2  |-  ( {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } TAp  2o  <->  ( { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } 
C_  ( 2o  X.  2o )  /\  ( A. a  e.  2o  -.  a { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a  /\  A. a  e.  2o  A. b  e.  2o  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } b  ->  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } a ) )  /\  ( A. a  e.  2o  A. b  e.  2o  A. c  e.  2o  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } b  ->  ( a {
<. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } c  \/  b { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } c ) )  /\  A. a  e.  2o  A. b  e.  2o  ( -.  a { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } b  ->  a  =  b ) ) ) )
1092, 35, 107, 108syl3anbrc 1183 1  |-  ( -. 
-.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp  2o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    e. wcel 2164    =/= wne 2364   A.wral 2472    C_ wss 3153   <.cop 3621   class class class wbr 4029   {copab 4089   omcom 4622    X. cxp 4657   2oc2o 6463   TAp wtap 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-1o 6469  df-2o 6470  df-pap 7308  df-tap 7310
This theorem is referenced by:  2omotaplemst  7318
  Copyright terms: Public domain W3C validator