ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd Unicode version

Theorem eqnetrd 2371
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1  |-  ( ph  ->  A  =  B )
eqnetrd.2  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
eqnetrd  |-  ( ph  ->  A  =/=  C )

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2  |-  ( ph  ->  B  =/=  C )
2 eqnetrd.1 . . 3  |-  ( ph  ->  A  =  B )
32neeq1d 2365 . 2  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
41, 3mpbird 167 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    =/= wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-ne 2348
This theorem is referenced by:  eqnetrrd  2373  frecabcl  6402  frecsuclem  6409  omp1eomlem  7095  xaddnemnf  9859  xaddnepnf  9860  hashprg  10790  bezoutr1  12036  phibndlem  12218  dfphi2  12222  lgsne0  14478  2sqlem8a  14508  2sqlem8  14509
  Copyright terms: Public domain W3C validator