ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd Unicode version

Theorem eqnetrd 2424
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1  |-  ( ph  ->  A  =  B )
eqnetrd.2  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
eqnetrd  |-  ( ph  ->  A  =/=  C )

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2  |-  ( ph  ->  B  =/=  C )
2 eqnetrd.1 . . 3  |-  ( ph  ->  A  =  B )
32neeq1d 2418 . 2  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
41, 3mpbird 167 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    =/= wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-ne 2401
This theorem is referenced by:  eqnetrrd  2426  ifnetruedc  3646  ifnefals  3647  frecabcl  6545  frecsuclem  6552  omp1eomlem  7261  xaddnemnf  10053  xaddnepnf  10054  hashprg  11030  bezoutr1  12554  phibndlem  12738  dfphi2  12742  lgsne0  15717  2sqlem8a  15801  2sqlem8  15802
  Copyright terms: Public domain W3C validator