ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd Unicode version

Theorem eqnetrd 2388
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1  |-  ( ph  ->  A  =  B )
eqnetrd.2  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
eqnetrd  |-  ( ph  ->  A  =/=  C )

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2  |-  ( ph  ->  B  =/=  C )
2 eqnetrd.1 . . 3  |-  ( ph  ->  A  =  B )
32neeq1d 2382 . 2  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
41, 3mpbird 167 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    =/= wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-ne 2365
This theorem is referenced by:  eqnetrrd  2390  ifnetruedc  3598  ifnefals  3599  frecabcl  6452  frecsuclem  6459  omp1eomlem  7153  xaddnemnf  9923  xaddnepnf  9924  hashprg  10879  bezoutr1  12170  phibndlem  12354  dfphi2  12358  lgsne0  15154  2sqlem8a  15209  2sqlem8  15210
  Copyright terms: Public domain W3C validator