ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd Unicode version

Theorem eqnetrd 2400
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1  |-  ( ph  ->  A  =  B )
eqnetrd.2  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
eqnetrd  |-  ( ph  ->  A  =/=  C )

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2  |-  ( ph  ->  B  =/=  C )
2 eqnetrd.1 . . 3  |-  ( ph  ->  A  =  B )
32neeq1d 2394 . 2  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
41, 3mpbird 167 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    =/= wne 2376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-ne 2377
This theorem is referenced by:  eqnetrrd  2402  ifnetruedc  3613  ifnefals  3614  frecabcl  6487  frecsuclem  6494  omp1eomlem  7198  xaddnemnf  9981  xaddnepnf  9982  hashprg  10955  bezoutr1  12387  phibndlem  12571  dfphi2  12575  lgsne0  15548  2sqlem8a  15632  2sqlem8  15633
  Copyright terms: Public domain W3C validator