ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd Unicode version

Theorem eqnetrd 2364
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1  |-  ( ph  ->  A  =  B )
eqnetrd.2  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
eqnetrd  |-  ( ph  ->  A  =/=  C )

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2  |-  ( ph  ->  B  =/=  C )
2 eqnetrd.1 . . 3  |-  ( ph  ->  A  =  B )
32neeq1d 2358 . 2  |-  ( ph  ->  ( A  =/=  C  <->  B  =/=  C ) )
41, 3mpbird 166 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-ne 2341
This theorem is referenced by:  eqnetrrd  2366  frecabcl  6378  frecsuclem  6385  omp1eomlem  7071  xaddnemnf  9814  xaddnepnf  9815  hashprg  10743  bezoutr1  11988  phibndlem  12170  dfphi2  12174  lgsne0  13733  2sqlem8a  13752  2sqlem8  13753
  Copyright terms: Public domain W3C validator