Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqnetrd | Unicode version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrd.1 | |
eqnetrd.2 |
Ref | Expression |
---|---|
eqnetrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrd.2 | . 2 | |
2 | eqnetrd.1 | . . 3 | |
3 | 2 | neeq1d 2345 | . 2 |
4 | 1, 3 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wne 2327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-ne 2328 |
This theorem is referenced by: eqnetrrd 2353 frecabcl 6340 frecsuclem 6347 omp1eomlem 7028 xaddnemnf 9743 xaddnepnf 9744 hashprg 10664 bezoutr1 11897 phibndlem 12068 dfphi2 12072 |
Copyright terms: Public domain | W3C validator |