ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbiri Unicode version

Theorem exbiri 382
Description: Inference form of exbir 1436. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.)
Hypothesis
Ref Expression
exbiri.1  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
exbiri  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )

Proof of Theorem exbiri
StepHypRef Expression
1 exbiri.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
21biimpar 297 . 2  |-  ( ( ( ph  /\  ps )  /\  th )  ->  ch )
32exp31 364 1  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biimp3ar  1346  eqrdav  2176  tfrlem9  6319  sbthlem1  6955  lbreu  8901  uzsubsubfz  10046  elfzodifsumelfzo  10200  cncfmptid  14019  addccncf  14022  negcncf  14024
  Copyright terms: Public domain W3C validator