ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbiri Unicode version

Theorem exbiri 382
Description: Inference form of exbir 1447. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.)
Hypothesis
Ref Expression
exbiri.1  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
exbiri  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )

Proof of Theorem exbiri
StepHypRef Expression
1 exbiri.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
21biimpar 297 . 2  |-  ( ( ( ph  /\  ps )  /\  th )  ->  ch )
32exp31 364 1  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biimp3ar  1357  eqrdav  2192  tfrlem9  6372  sbthlem1  7016  lbreu  8964  uzsubsubfz  10113  elfzodifsumelfzo  10268  cncfmptid  14751  addccncf  14754  negcncf  14759  gausslemma2dlem1a  15174
  Copyright terms: Public domain W3C validator