| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | Unicode version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 |
|
| Ref | Expression |
|---|---|
| eqrdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1897 |
. 2
|
| 3 | dfcleq 2199 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqrdav 2204 eqabdv 2334 csbcomg 3116 csbabg 3155 uneq1 3320 ineq1 3367 difin2 3435 difsn 3770 intmin4 3913 iunconstm 3935 iinconstm 3936 dfiun2g 3959 iindif2m 3995 iinin2m 3996 iunxsng 4003 iunxsngf 4005 iunpw 4528 opthprc 4727 inimasn 5101 dmsnopg 5155 dfco2a 5184 iotaeq 5241 fun11iun 5545 ssimaex 5642 unpreima 5707 respreima 5710 fconstfvm 5804 reldm 6274 rntpos 6345 frecsuclem 6494 iserd 6648 erth 6668 ecidg 6688 mapdm0 6752 map0e 6775 ixpiinm 6813 pw2f1odclem 6933 fifo 7084 ordiso2 7139 ctssdccl 7215 ctssdc 7217 finacn 7318 exmidapne 7374 acnccim 7386 genpassl 7639 genpassu 7640 1idprl 7705 1idpru 7706 sup3exmid 9032 eqreznegel 9737 iccid 10049 fzsplit2 10174 fzsn 10190 fzpr 10201 uzsplit 10216 fzoval 10272 infssuzex 10378 frec2uzrand 10552 bitsmod 12300 bitscmp 12302 divsfval 13193 mhmpropd 13331 eqgid 13595 ghmmhmb 13623 ghmpropd 13652 ablnsg 13703 opprsubgg 13879 opprunitd 13905 unitpropdg 13943 opprsubrngg 14006 subsubrng2 14010 subrngpropd 14011 subsubrg2 14041 subrgpropd 14048 rhmpropd 14049 lssats2 14209 lsspropdg 14226 discld 14641 restsn 14685 restdis 14689 cndis 14746 cnpdis 14747 tx1cn 14774 tx2cn 14775 blpnf 14905 blininf 14929 blres 14939 xmetec 14942 metrest 15011 xmetxpbl 15013 cnbl0 15039 reopnap 15051 bl2ioo 15055 cncfmet 15097 limcdifap 15167 gausslemma2dlem1a 15568 |
| Copyright terms: Public domain | W3C validator |