| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | Unicode version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 |
|
| Ref | Expression |
|---|---|
| eqrdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1897 |
. 2
|
| 3 | dfcleq 2199 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqrdav 2204 eqabdv 2334 csbcomg 3116 csbabg 3155 uneq1 3320 ineq1 3367 difin2 3435 difsn 3770 intmin4 3913 iunconstm 3935 iinconstm 3936 dfiun2g 3959 iindif2m 3995 iinin2m 3996 iunxsng 4003 iunxsngf 4005 iunpw 4527 opthprc 4726 inimasn 5100 dmsnopg 5154 dfco2a 5183 iotaeq 5240 fun11iun 5543 ssimaex 5640 unpreima 5705 respreima 5708 fconstfvm 5802 reldm 6272 rntpos 6343 frecsuclem 6492 iserd 6646 erth 6666 ecidg 6686 mapdm0 6750 map0e 6773 ixpiinm 6811 pw2f1odclem 6931 fifo 7082 ordiso2 7137 ctssdccl 7213 ctssdc 7215 finacn 7316 exmidapne 7372 acnccim 7384 genpassl 7637 genpassu 7638 1idprl 7703 1idpru 7704 sup3exmid 9030 eqreznegel 9735 iccid 10047 fzsplit2 10172 fzsn 10188 fzpr 10199 uzsplit 10214 fzoval 10270 infssuzex 10376 frec2uzrand 10550 bitsmod 12267 bitscmp 12269 divsfval 13160 mhmpropd 13298 eqgid 13562 ghmmhmb 13590 ghmpropd 13619 ablnsg 13670 opprsubgg 13846 opprunitd 13872 unitpropdg 13910 opprsubrngg 13973 subsubrng2 13977 subrngpropd 13978 subsubrg2 14008 subrgpropd 14015 rhmpropd 14016 lssats2 14176 lsspropdg 14193 discld 14608 restsn 14652 restdis 14656 cndis 14713 cnpdis 14714 tx1cn 14741 tx2cn 14742 blpnf 14872 blininf 14896 blres 14906 xmetec 14909 metrest 14978 xmetxpbl 14980 cnbl0 15006 reopnap 15018 bl2ioo 15022 cncfmet 15064 limcdifap 15134 gausslemma2dlem1a 15535 |
| Copyright terms: Public domain | W3C validator |