![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqrdv | Unicode version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
Ref | Expression |
---|---|
eqrdv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqrdv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alrimiv 1885 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | dfcleq 2187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqrdav 2192 eqabdv 2322 csbcomg 3104 csbabg 3143 uneq1 3307 ineq1 3354 difin2 3422 difsn 3756 intmin4 3899 iunconstm 3921 iinconstm 3922 dfiun2g 3945 iindif2m 3981 iinin2m 3982 iunxsng 3989 iunxsngf 3991 iunpw 4512 opthprc 4711 inimasn 5084 dmsnopg 5138 dfco2a 5167 iotaeq 5224 fun11iun 5522 ssimaex 5619 unpreima 5684 respreima 5687 fconstfvm 5777 reldm 6241 rntpos 6312 frecsuclem 6461 iserd 6615 erth 6635 ecidg 6655 mapdm0 6719 map0e 6742 ixpiinm 6780 pw2f1odclem 6892 fifo 7041 ordiso2 7096 ctssdccl 7172 ctssdc 7174 exmidapne 7322 genpassl 7586 genpassu 7587 1idprl 7652 1idpru 7653 sup3exmid 8978 eqreznegel 9682 iccid 9994 fzsplit2 10119 fzsn 10135 fzpr 10146 uzsplit 10161 fzoval 10217 frec2uzrand 10479 infssuzex 12089 divsfval 12914 mhmpropd 13041 eqgid 13299 ghmmhmb 13327 ghmpropd 13356 ablnsg 13407 opprsubgg 13583 opprunitd 13609 unitpropdg 13647 opprsubrngg 13710 subsubrng2 13714 subrngpropd 13715 subsubrg2 13745 subrgpropd 13752 rhmpropd 13753 lssats2 13913 lsspropdg 13930 discld 14315 restsn 14359 restdis 14363 cndis 14420 cnpdis 14421 tx1cn 14448 tx2cn 14449 blpnf 14579 blininf 14603 blres 14613 xmetec 14616 metrest 14685 xmetxpbl 14687 cnbl0 14713 reopnap 14725 bl2ioo 14729 cncfmet 14771 limcdifap 14841 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |