| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | Unicode version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 |
|
| Ref | Expression |
|---|---|
| eqrdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1888 |
. 2
|
| 3 | dfcleq 2190 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqrdav 2195 eqabdv 2325 csbcomg 3107 csbabg 3146 uneq1 3311 ineq1 3358 difin2 3426 difsn 3760 intmin4 3903 iunconstm 3925 iinconstm 3926 dfiun2g 3949 iindif2m 3985 iinin2m 3986 iunxsng 3993 iunxsngf 3995 iunpw 4516 opthprc 4715 inimasn 5088 dmsnopg 5142 dfco2a 5171 iotaeq 5228 fun11iun 5528 ssimaex 5625 unpreima 5690 respreima 5693 fconstfvm 5783 reldm 6253 rntpos 6324 frecsuclem 6473 iserd 6627 erth 6647 ecidg 6667 mapdm0 6731 map0e 6754 ixpiinm 6792 pw2f1odclem 6904 fifo 7055 ordiso2 7110 ctssdccl 7186 ctssdc 7188 finacn 7287 exmidapne 7343 acnccim 7355 genpassl 7608 genpassu 7609 1idprl 7674 1idpru 7675 sup3exmid 9001 eqreznegel 9705 iccid 10017 fzsplit2 10142 fzsn 10158 fzpr 10169 uzsplit 10184 fzoval 10240 infssuzex 10340 frec2uzrand 10514 bitsmod 12138 bitscmp 12140 divsfval 13030 mhmpropd 13168 eqgid 13432 ghmmhmb 13460 ghmpropd 13489 ablnsg 13540 opprsubgg 13716 opprunitd 13742 unitpropdg 13780 opprsubrngg 13843 subsubrng2 13847 subrngpropd 13848 subsubrg2 13878 subrgpropd 13885 rhmpropd 13886 lssats2 14046 lsspropdg 14063 discld 14456 restsn 14500 restdis 14504 cndis 14561 cnpdis 14562 tx1cn 14589 tx2cn 14590 blpnf 14720 blininf 14744 blres 14754 xmetec 14757 metrest 14826 xmetxpbl 14828 cnbl0 14854 reopnap 14866 bl2ioo 14870 cncfmet 14912 limcdifap 14982 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |