![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqrdv | Unicode version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
Ref | Expression |
---|---|
eqrdv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqrdv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alrimiv 1826 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | dfcleq 2107 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylibr 133 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-gen 1406 ax-17 1487 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-cleq 2106 |
This theorem is referenced by: eqrdav 2112 csbcomg 2990 csbabg 3025 uneq1 3187 ineq1 3234 difin2 3302 difsn 3621 intmin4 3763 iunconstm 3785 iinconstm 3786 dfiun2g 3809 iindif2m 3844 iinin2m 3845 iunxsng 3852 iunxsngf 3854 iunpw 4359 opthprc 4548 inimasn 4912 dmsnopg 4966 dfco2a 4995 iotaeq 5052 fun11iun 5342 ssimaex 5434 unpreima 5497 respreima 5500 fconstfvm 5590 reldm 6036 rntpos 6106 frecsuclem 6255 iserd 6407 erth 6425 ecidg 6445 mapdm0 6509 map0e 6532 ixpiinm 6570 fifo 6818 ordiso2 6870 ctssdccl 6946 ctssdc 6948 genpassl 7274 genpassu 7275 1idprl 7340 1idpru 7341 sup3exmid 8619 eqreznegel 9302 iccid 9595 fzsplit2 9717 fzsn 9733 fzpr 9744 uzsplit 9759 fzoval 9812 frec2uzrand 10065 infssuzex 11484 discld 12142 restsn 12186 restdis 12190 cndis 12246 cnpdis 12247 tx1cn 12274 tx2cn 12275 blpnf 12383 blininf 12407 blres 12417 xmetec 12420 metrest 12489 xmetxpbl 12491 cnbl0 12517 bl2ioo 12522 cncfmet 12559 limcdifap 12581 |
Copyright terms: Public domain | W3C validator |