| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | Unicode version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 |
|
| Ref | Expression |
|---|---|
| eqrdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1898 |
. 2
|
| 3 | dfcleq 2201 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqrdav 2206 eqabdv 2336 csbcomg 3124 csbabg 3163 uneq1 3328 ineq1 3375 difin2 3443 difsn 3781 intmin4 3927 iunconstm 3949 iinconstm 3950 dfiun2g 3973 iindif2m 4009 iinin2m 4010 iunxsng 4017 iunxsngf 4019 iunpw 4545 opthprc 4744 inimasn 5119 dmsnopg 5173 dfco2a 5202 iotaeq 5259 fun11iun 5565 ssimaex 5663 unpreima 5728 respreima 5731 fconstfvm 5825 reldm 6295 rntpos 6366 frecsuclem 6515 iserd 6669 erth 6689 ecidg 6709 mapdm0 6773 map0e 6796 ixpiinm 6834 pw2f1odclem 6956 fifo 7108 ordiso2 7163 ctssdccl 7239 ctssdc 7241 finacn 7347 pw1if 7371 exmidapne 7407 acnccim 7419 genpassl 7672 genpassu 7673 1idprl 7738 1idpru 7739 sup3exmid 9065 eqreznegel 9770 iccid 10082 fzsplit2 10207 fzsn 10223 fzpr 10234 uzsplit 10249 fzoval 10305 infssuzex 10413 frec2uzrand 10587 bitsmod 12382 bitscmp 12384 divsfval 13275 mhmpropd 13413 eqgid 13677 ghmmhmb 13705 ghmpropd 13734 ablnsg 13785 opprsubgg 13961 opprunitd 13987 unitpropdg 14025 opprsubrngg 14088 subsubrng2 14092 subrngpropd 14093 subsubrg2 14123 subrgpropd 14130 rhmpropd 14131 lssats2 14291 lsspropdg 14308 discld 14723 restsn 14767 restdis 14771 cndis 14828 cnpdis 14829 tx1cn 14856 tx2cn 14857 blpnf 14987 blininf 15011 blres 15021 xmetec 15024 metrest 15093 xmetxpbl 15095 cnbl0 15121 reopnap 15133 bl2ioo 15137 cncfmet 15179 limcdifap 15249 gausslemma2dlem1a 15650 |
| Copyright terms: Public domain | W3C validator |