| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | Unicode version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 |
|
| Ref | Expression |
|---|---|
| eqrdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1920 |
. 2
|
| 3 | dfcleq 2223 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqrdav 2228 eqabdv 2358 csbcomg 3147 csbabg 3186 uneq1 3351 ineq1 3398 difin2 3466 difsn 3805 intmin4 3951 iunconstm 3973 iinconstm 3974 dfiun2g 3997 iindif2m 4033 iinin2m 4034 iunxsng 4041 iunxsngf 4043 iunpw 4571 opthprc 4770 inimasn 5146 dmsnopg 5200 dfco2a 5229 iotaeq 5287 fun11iun 5593 ssimaex 5695 unpreima 5760 respreima 5763 fconstfvm 5857 reldm 6332 rntpos 6403 frecsuclem 6552 iserd 6706 erth 6726 ecidg 6746 mapdm0 6810 map0e 6833 ixpiinm 6871 pw2f1odclem 6995 fifo 7147 ordiso2 7202 ctssdccl 7278 ctssdc 7280 finacn 7386 pw1if 7410 exmidapne 7446 acnccim 7458 genpassl 7711 genpassu 7712 1idprl 7777 1idpru 7778 sup3exmid 9104 eqreznegel 9809 iccid 10121 fzsplit2 10246 fzsn 10262 fzpr 10273 uzsplit 10288 fzoval 10344 infssuzex 10453 frec2uzrand 10627 bitsmod 12467 bitscmp 12469 divsfval 13361 mhmpropd 13499 eqgid 13763 ghmmhmb 13791 ghmpropd 13820 ablnsg 13871 opprsubgg 14047 opprunitd 14074 unitpropdg 14112 opprsubrngg 14175 subsubrng2 14179 subrngpropd 14180 subsubrg2 14210 subrgpropd 14217 rhmpropd 14218 lssats2 14378 lsspropdg 14395 discld 14810 restsn 14854 restdis 14858 cndis 14915 cnpdis 14916 tx1cn 14943 tx2cn 14944 blpnf 15074 blininf 15098 blres 15108 xmetec 15111 metrest 15180 xmetxpbl 15182 cnbl0 15208 reopnap 15220 bl2ioo 15224 cncfmet 15266 limcdifap 15336 gausslemma2dlem1a 15737 ushgredgedg 16024 ushgredgedgloop 16026 |
| Copyright terms: Public domain | W3C validator |