![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqrdv | Unicode version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
Ref | Expression |
---|---|
eqrdv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqrdv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alrimiv 1885 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | dfcleq 2187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqrdav 2192 eqabdv 2322 csbcomg 3103 csbabg 3142 uneq1 3306 ineq1 3353 difin2 3421 difsn 3755 intmin4 3898 iunconstm 3920 iinconstm 3921 dfiun2g 3944 iindif2m 3980 iinin2m 3981 iunxsng 3988 iunxsngf 3990 iunpw 4511 opthprc 4710 inimasn 5083 dmsnopg 5137 dfco2a 5166 iotaeq 5223 fun11iun 5521 ssimaex 5618 unpreima 5683 respreima 5686 fconstfvm 5776 reldm 6239 rntpos 6310 frecsuclem 6459 iserd 6613 erth 6633 ecidg 6653 mapdm0 6717 map0e 6740 ixpiinm 6778 pw2f1odclem 6890 fifo 7039 ordiso2 7094 ctssdccl 7170 ctssdc 7172 exmidapne 7320 genpassl 7584 genpassu 7585 1idprl 7650 1idpru 7651 sup3exmid 8976 eqreznegel 9679 iccid 9991 fzsplit2 10116 fzsn 10132 fzpr 10143 uzsplit 10158 fzoval 10214 frec2uzrand 10476 infssuzex 12086 divsfval 12911 mhmpropd 13038 eqgid 13296 ghmmhmb 13324 ghmpropd 13353 ablnsg 13404 opprsubgg 13580 opprunitd 13606 unitpropdg 13644 opprsubrngg 13707 subsubrng2 13711 subrngpropd 13712 subsubrg2 13742 subrgpropd 13749 rhmpropd 13750 lssats2 13910 lsspropdg 13927 discld 14304 restsn 14348 restdis 14352 cndis 14409 cnpdis 14410 tx1cn 14437 tx2cn 14438 blpnf 14568 blininf 14592 blres 14602 xmetec 14605 metrest 14674 xmetxpbl 14676 cnbl0 14702 reopnap 14706 bl2ioo 14710 cncfmet 14747 limcdifap 14816 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |