ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdifsuc Unicode version

Theorem fzdifsuc 9868
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( ( M ... ( N  +  1 ) )  \  { ( N  +  1 ) } ) )

Proof of Theorem fzdifsuc
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzelz 9813 . . 3  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
21adantl 275 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( M ... N
) )  ->  k  e.  ZZ )
3 eldifi 3198 . . . 4  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  ->  k  e.  ( M ... ( N  +  1 ) ) )
4 elfzelz 9813 . . . 4  |-  ( k  e.  ( M ... ( N  +  1
) )  ->  k  e.  ZZ )
53, 4syl 14 . . 3  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  ->  k  e.  ZZ )
65adantl 275 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ( M ... ( N  +  1
) )  \  {
( N  +  1 ) } ) )  ->  k  e.  ZZ )
7 simpr 109 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
8 eluzel2 9338 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
98adantr 274 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  M  e.  ZZ )
10 eluzelz 9342 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1110adantr 274 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
12 elfz 9803 . . . 4  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  ( M  <_  k  /\  k  <_  N ) ) )
137, 9, 11, 12syl3anc 1216 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  ( M  <_  k  /\  k  <_  N ) ) )
14 eldif 3080 . . . . . . 7  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  <-> 
( k  e.  ( M ... ( N  +  1 ) )  /\  -.  k  e. 
{ ( N  + 
1 ) } ) )
1511peano2zd 9183 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( N  +  1 )  e.  ZZ )
16 elfz 9803 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( k  e.  ( M ... ( N  +  1 ) )  <-> 
( M  <_  k  /\  k  <_  ( N  +  1 ) ) ) )
177, 9, 15, 16syl3anc 1216 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... ( N  + 
1 ) )  <->  ( M  <_  k  /\  k  <_ 
( N  +  1 ) ) ) )
18 velsn 3544 . . . . . . . . . . 11  |-  ( k  e.  { ( N  +  1 ) }  <-> 
k  =  ( N  +  1 ) )
1918notbii 657 . . . . . . . . . 10  |-  ( -.  k  e.  { ( N  +  1 ) }  <->  -.  k  =  ( N  +  1
) )
20 nesym 2353 . . . . . . . . . 10  |-  ( ( N  +  1 )  =/=  k  <->  -.  k  =  ( N  + 
1 ) )
2119, 20bitr4i 186 . . . . . . . . 9  |-  ( -.  k  e.  { ( N  +  1 ) }  <->  ( N  + 
1 )  =/=  k
)
2221a1i 9 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( -.  k  e.  { ( N  +  1 ) }  <->  ( N  + 
1 )  =/=  k
) )
2317, 22anbi12d 464 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( k  e.  ( M ... ( N  +  1 ) )  /\  -.  k  e. 
{ ( N  + 
1 ) } )  <-> 
( ( M  <_ 
k  /\  k  <_  ( N  +  1 ) )  /\  ( N  +  1 )  =/=  k ) ) )
2414, 23syl5bb 191 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( ( M  <_  k  /\  k  <_  ( N  +  1 ) )  /\  ( N  +  1 )  =/=  k ) ) )
25 anass 398 . . . . . 6  |-  ( ( ( M  <_  k  /\  k  <_  ( N  +  1 ) )  /\  ( N  + 
1 )  =/=  k
)  <->  ( M  <_ 
k  /\  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
2624, 25syl6bb 195 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) ) )
27 zltlen 9136 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( k  < 
( N  +  1 )  <->  ( k  <_ 
( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
287, 15, 27syl2anc 408 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  <  ( N  +  1 )  <->  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
2928anbi2d 459 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <  ( N  +  1 ) )  <-> 
( M  <_  k  /\  ( k  <_  ( N  +  1 )  /\  ( N  + 
1 )  =/=  k
) ) ) )
3026, 29bitr4d 190 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  k  <  ( N  +  1 ) ) ) )
31 zleltp1 9116 . . . . . 6  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <_  N  <->  k  <  ( N  + 
1 ) ) )
327, 11, 31syl2anc 408 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  <_  N  <->  k  <  ( N  +  1 ) ) )
3332anbi2d 459 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  <-> 
( M  <_  k  /\  k  <  ( N  +  1 ) ) ) )
3430, 33bitr4d 190 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  k  <_  N ) ) )
3513, 34bitr4d 190 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  k  e.  ( ( M ... ( N  +  1
) )  \  {
( N  +  1 ) } ) ) )
362, 6, 35eqrdav 2138 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( ( M ... ( N  +  1 ) )  \  { ( N  +  1 ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    =/= wne 2308    \ cdif 3068   {csn 3527   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1c1 7628    + caddc 7630    < clt 7807    <_ cle 7808   ZZcz 9061   ZZ>=cuz 9333   ...cfz 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-fz 9798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator