ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdifsuc Unicode version

Theorem fzdifsuc 10205
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( ( M ... ( N  +  1 ) )  \  { ( N  +  1 ) } ) )

Proof of Theorem fzdifsuc
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzelz 10149 . . 3  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
21adantl 277 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( M ... N
) )  ->  k  e.  ZZ )
3 eldifi 3295 . . . 4  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  ->  k  e.  ( M ... ( N  +  1 ) ) )
4 elfzelz 10149 . . . 4  |-  ( k  e.  ( M ... ( N  +  1
) )  ->  k  e.  ZZ )
53, 4syl 14 . . 3  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  ->  k  e.  ZZ )
65adantl 277 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ( M ... ( N  +  1
) )  \  {
( N  +  1 ) } ) )  ->  k  e.  ZZ )
7 simpr 110 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
8 eluzel2 9655 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
98adantr 276 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  M  e.  ZZ )
10 eluzelz 9659 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1110adantr 276 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
12 elfz 10138 . . . 4  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  ( M  <_  k  /\  k  <_  N ) ) )
137, 9, 11, 12syl3anc 1250 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  ( M  <_  k  /\  k  <_  N ) ) )
14 eldif 3175 . . . . . . 7  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  <-> 
( k  e.  ( M ... ( N  +  1 ) )  /\  -.  k  e. 
{ ( N  + 
1 ) } ) )
1511peano2zd 9500 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( N  +  1 )  e.  ZZ )
16 elfz 10138 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( k  e.  ( M ... ( N  +  1 ) )  <-> 
( M  <_  k  /\  k  <_  ( N  +  1 ) ) ) )
177, 9, 15, 16syl3anc 1250 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... ( N  + 
1 ) )  <->  ( M  <_  k  /\  k  <_ 
( N  +  1 ) ) ) )
18 velsn 3650 . . . . . . . . . . 11  |-  ( k  e.  { ( N  +  1 ) }  <-> 
k  =  ( N  +  1 ) )
1918notbii 670 . . . . . . . . . 10  |-  ( -.  k  e.  { ( N  +  1 ) }  <->  -.  k  =  ( N  +  1
) )
20 nesym 2421 . . . . . . . . . 10  |-  ( ( N  +  1 )  =/=  k  <->  -.  k  =  ( N  + 
1 ) )
2119, 20bitr4i 187 . . . . . . . . 9  |-  ( -.  k  e.  { ( N  +  1 ) }  <->  ( N  + 
1 )  =/=  k
)
2221a1i 9 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( -.  k  e.  { ( N  +  1 ) }  <->  ( N  + 
1 )  =/=  k
) )
2317, 22anbi12d 473 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( k  e.  ( M ... ( N  +  1 ) )  /\  -.  k  e. 
{ ( N  + 
1 ) } )  <-> 
( ( M  <_ 
k  /\  k  <_  ( N  +  1 ) )  /\  ( N  +  1 )  =/=  k ) ) )
2414, 23bitrid 192 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( ( M  <_  k  /\  k  <_  ( N  +  1 ) )  /\  ( N  +  1 )  =/=  k ) ) )
25 anass 401 . . . . . 6  |-  ( ( ( M  <_  k  /\  k  <_  ( N  +  1 ) )  /\  ( N  + 
1 )  =/=  k
)  <->  ( M  <_ 
k  /\  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
2624, 25bitrdi 196 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) ) )
27 zltlen 9453 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( k  < 
( N  +  1 )  <->  ( k  <_ 
( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
287, 15, 27syl2anc 411 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  <  ( N  +  1 )  <->  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
2928anbi2d 464 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <  ( N  +  1 ) )  <-> 
( M  <_  k  /\  ( k  <_  ( N  +  1 )  /\  ( N  + 
1 )  =/=  k
) ) ) )
3026, 29bitr4d 191 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  k  <  ( N  +  1 ) ) ) )
31 zleltp1 9430 . . . . . 6  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <_  N  <->  k  <  ( N  + 
1 ) ) )
327, 11, 31syl2anc 411 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  <_  N  <->  k  <  ( N  +  1 ) ) )
3332anbi2d 464 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  <-> 
( M  <_  k  /\  k  <  ( N  +  1 ) ) ) )
3430, 33bitr4d 191 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  k  <_  N ) ) )
3513, 34bitr4d 191 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  k  e.  ( ( M ... ( N  +  1
) )  \  {
( N  +  1 ) } ) ) )
362, 6, 35eqrdav 2204 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( ( M ... ( N  +  1 ) )  \  { ( N  +  1 ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    =/= wne 2376    \ cdif 3163   {csn 3633   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   1c1 7928    + caddc 7930    < clt 8109    <_ cle 8110   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator