ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdifsuc Unicode version

Theorem fzdifsuc 9462
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( ( M ... ( N  +  1 ) )  \  { ( N  +  1 ) } ) )

Proof of Theorem fzdifsuc
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzelz 9409 . . 3  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
21adantl 271 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( M ... N
) )  ->  k  e.  ZZ )
3 eldifi 3120 . . . 4  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  ->  k  e.  ( M ... ( N  +  1 ) ) )
4 elfzelz 9409 . . . 4  |-  ( k  e.  ( M ... ( N  +  1
) )  ->  k  e.  ZZ )
53, 4syl 14 . . 3  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  ->  k  e.  ZZ )
65adantl 271 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ( M ... ( N  +  1
) )  \  {
( N  +  1 ) } ) )  ->  k  e.  ZZ )
7 simpr 108 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
8 eluzel2 8993 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
98adantr 270 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  M  e.  ZZ )
10 eluzelz 8997 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1110adantr 270 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
12 elfz 9399 . . . 4  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  ( M  <_  k  /\  k  <_  N ) ) )
137, 9, 11, 12syl3anc 1174 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  ( M  <_  k  /\  k  <_  N ) ) )
14 eldif 3006 . . . . . . 7  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  <-> 
( k  e.  ( M ... ( N  +  1 ) )  /\  -.  k  e. 
{ ( N  + 
1 ) } ) )
1511peano2zd 8841 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( N  +  1 )  e.  ZZ )
16 elfz 9399 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( k  e.  ( M ... ( N  +  1 ) )  <-> 
( M  <_  k  /\  k  <_  ( N  +  1 ) ) ) )
177, 9, 15, 16syl3anc 1174 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... ( N  + 
1 ) )  <->  ( M  <_  k  /\  k  <_ 
( N  +  1 ) ) ) )
18 velsn 3458 . . . . . . . . . . 11  |-  ( k  e.  { ( N  +  1 ) }  <-> 
k  =  ( N  +  1 ) )
1918notbii 629 . . . . . . . . . 10  |-  ( -.  k  e.  { ( N  +  1 ) }  <->  -.  k  =  ( N  +  1
) )
20 nesym 2300 . . . . . . . . . 10  |-  ( ( N  +  1 )  =/=  k  <->  -.  k  =  ( N  + 
1 ) )
2119, 20bitr4i 185 . . . . . . . . 9  |-  ( -.  k  e.  { ( N  +  1 ) }  <->  ( N  + 
1 )  =/=  k
)
2221a1i 9 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( -.  k  e.  { ( N  +  1 ) }  <->  ( N  + 
1 )  =/=  k
) )
2317, 22anbi12d 457 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( k  e.  ( M ... ( N  +  1 ) )  /\  -.  k  e. 
{ ( N  + 
1 ) } )  <-> 
( ( M  <_ 
k  /\  k  <_  ( N  +  1 ) )  /\  ( N  +  1 )  =/=  k ) ) )
2414, 23syl5bb 190 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( ( M  <_  k  /\  k  <_  ( N  +  1 ) )  /\  ( N  +  1 )  =/=  k ) ) )
25 anass 393 . . . . . 6  |-  ( ( ( M  <_  k  /\  k  <_  ( N  +  1 ) )  /\  ( N  + 
1 )  =/=  k
)  <->  ( M  <_ 
k  /\  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
2624, 25syl6bb 194 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) ) )
27 zltlen 8795 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( k  < 
( N  +  1 )  <->  ( k  <_ 
( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
287, 15, 27syl2anc 403 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  <  ( N  +  1 )  <->  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
2928anbi2d 452 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <  ( N  +  1 ) )  <-> 
( M  <_  k  /\  ( k  <_  ( N  +  1 )  /\  ( N  + 
1 )  =/=  k
) ) ) )
3026, 29bitr4d 189 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  k  <  ( N  +  1 ) ) ) )
31 zleltp1 8775 . . . . . 6  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <_  N  <->  k  <  ( N  + 
1 ) ) )
327, 11, 31syl2anc 403 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  <_  N  <->  k  <  ( N  +  1 ) ) )
3332anbi2d 452 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  <-> 
( M  <_  k  /\  k  <  ( N  +  1 ) ) ) )
3430, 33bitr4d 189 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  k  <_  N ) ) )
3513, 34bitr4d 189 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  k  e.  ( ( M ... ( N  +  1
) )  \  {
( N  +  1 ) } ) ) )
362, 6, 35eqrdav 2087 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( ( M ... ( N  +  1 ) )  \  { ( N  +  1 ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438    =/= wne 2255    \ cdif 2994   {csn 3441   class class class wbr 3837   ` cfv 5002  (class class class)co 5634   1c1 7330    + caddc 7332    < clt 7501    <_ cle 7502   ZZcz 8720   ZZ>=cuz 8988   ...cfz 9393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator