Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supminfex | Unicode version |
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.) |
Ref | Expression |
---|---|
supminfex.ex | |
supminfex.ss |
Ref | Expression |
---|---|
supminfex | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supminfex.ex | . . . . 5 | |
2 | supminfex.ss | . . . . 5 | |
3 | 1, 2 | supinfneg 9529 | . . . 4 |
4 | ssrab2 3226 | . . . . 5 | |
5 | 4 | a1i 9 | . . . 4 |
6 | 3, 5 | infrenegsupex 9528 | . . 3 inf |
7 | elrabi 2878 | . . . . . . 7 | |
8 | 7 | adantl 275 | . . . . . 6 |
9 | 2 | sselda 3141 | . . . . . 6 |
10 | negeq 8087 | . . . . . . . . . 10 | |
11 | 10 | eleq1d 2234 | . . . . . . . . 9 |
12 | 11 | elrab3 2882 | . . . . . . . 8 |
13 | renegcl 8155 | . . . . . . . . 9 | |
14 | negeq 8087 | . . . . . . . . . . 11 | |
15 | 14 | eleq1d 2234 | . . . . . . . . . 10 |
16 | 15 | elrab3 2882 | . . . . . . . . 9 |
17 | 13, 16 | syl 14 | . . . . . . . 8 |
18 | recn 7882 | . . . . . . . . . 10 | |
19 | 18 | negnegd 8196 | . . . . . . . . 9 |
20 | 19 | eleq1d 2234 | . . . . . . . 8 |
21 | 12, 17, 20 | 3bitrd 213 | . . . . . . 7 |
22 | 21 | adantl 275 | . . . . . 6 |
23 | 8, 9, 22 | eqrdav 2164 | . . . . 5 |
24 | 23 | supeq1d 6948 | . . . 4 |
25 | 24 | negeqd 8089 | . . 3 |
26 | 6, 25 | eqtrd 2198 | . 2 inf |
27 | lttri3 7974 | . . . . . 6 | |
28 | 27 | adantl 275 | . . . . 5 |
29 | 28, 3 | infclti 6984 | . . . 4 inf |
30 | 29 | recnd 7923 | . . 3 inf |
31 | 28, 1 | supclti 6959 | . . . 4 |
32 | 31 | recnd 7923 | . . 3 |
33 | negcon2 8147 | . . 3 inf inf inf | |
34 | 30, 32, 33 | syl2anc 409 | . 2 inf inf |
35 | 26, 34 | mpbid 146 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2443 wrex 2444 crab 2447 wss 3115 class class class wbr 3981 csup 6943 infcinf 6944 cc 7747 cr 7748 clt 7929 cneg 8066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-apti 7864 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-ltxr 7934 df-sub 8067 df-neg 8068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |