| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supminfex | Unicode version | ||
| Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.) |
| Ref | Expression |
|---|---|
| supminfex.ex |
|
| supminfex.ss |
|
| Ref | Expression |
|---|---|
| supminfex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supminfex.ex |
. . . . 5
| |
| 2 | supminfex.ss |
. . . . 5
| |
| 3 | 1, 2 | supinfneg 9751 |
. . . 4
|
| 4 | ssrab2 3286 |
. . . . 5
| |
| 5 | 4 | a1i 9 |
. . . 4
|
| 6 | 3, 5 | infrenegsupex 9750 |
. . 3
|
| 7 | elrabi 2933 |
. . . . . . 7
| |
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | 2 | sselda 3201 |
. . . . . 6
|
| 10 | negeq 8300 |
. . . . . . . . . 10
| |
| 11 | 10 | eleq1d 2276 |
. . . . . . . . 9
|
| 12 | 11 | elrab3 2937 |
. . . . . . . 8
|
| 13 | renegcl 8368 |
. . . . . . . . 9
| |
| 14 | negeq 8300 |
. . . . . . . . . . 11
| |
| 15 | 14 | eleq1d 2276 |
. . . . . . . . . 10
|
| 16 | 15 | elrab3 2937 |
. . . . . . . . 9
|
| 17 | 13, 16 | syl 14 |
. . . . . . . 8
|
| 18 | recn 8093 |
. . . . . . . . . 10
| |
| 19 | 18 | negnegd 8409 |
. . . . . . . . 9
|
| 20 | 19 | eleq1d 2276 |
. . . . . . . 8
|
| 21 | 12, 17, 20 | 3bitrd 214 |
. . . . . . 7
|
| 22 | 21 | adantl 277 |
. . . . . 6
|
| 23 | 8, 9, 22 | eqrdav 2206 |
. . . . 5
|
| 24 | 23 | supeq1d 7115 |
. . . 4
|
| 25 | 24 | negeqd 8302 |
. . 3
|
| 26 | 6, 25 | eqtrd 2240 |
. 2
|
| 27 | lttri3 8187 |
. . . . . 6
| |
| 28 | 27 | adantl 277 |
. . . . 5
|
| 29 | 28, 3 | infclti 7151 |
. . . 4
|
| 30 | 29 | recnd 8136 |
. . 3
|
| 31 | 28, 1 | supclti 7126 |
. . . 4
|
| 32 | 31 | recnd 8136 |
. . 3
|
| 33 | negcon2 8360 |
. . 3
| |
| 34 | 30, 32, 33 | syl2anc 411 |
. 2
|
| 35 | 26, 34 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |