ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex Unicode version

Theorem supminfex 9549
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
supminfex.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
supminfex  |-  ( ph  ->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
Distinct variable groups:    w, A, x, y, z    ph, x, y, z
Allowed substitution hint:    ph( w)

Proof of Theorem supminfex
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
2 supminfex.ss . . . . 5  |-  ( ph  ->  A  C_  RR )
31, 2supinfneg 9547 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) )
4 ssrab2 3232 . . . . 5  |-  { w  e.  RR  |  -u w  e.  A }  C_  RR
54a1i 9 . . . 4  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  A }  C_  RR )
63, 5infrenegsupex 9546 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  ) )
7 elrabi 2883 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  ->  x  e.  RR )
87adantl 275 . . . . . 6  |-  ( (
ph  /\  x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } )  ->  x  e.  RR )
92sselda 3147 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
10 negeq 8105 . . . . . . . . . 10  |-  ( z  =  x  ->  -u z  =  -u x )
1110eleq1d 2239 . . . . . . . . 9  |-  ( z  =  x  ->  ( -u z  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u x  e. 
{ w  e.  RR  |  -u w  e.  A } ) )
1211elrab3 2887 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  -u x  e. 
{ w  e.  RR  |  -u w  e.  A } ) )
13 renegcl 8173 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u x  e.  RR )
14 negeq 8105 . . . . . . . . . . 11  |-  ( w  =  -u x  ->  -u w  =  -u -u x )
1514eleq1d 2239 . . . . . . . . . 10  |-  ( w  =  -u x  ->  ( -u w  e.  A  <->  -u -u x  e.  A ) )
1615elrab3 2887 . . . . . . . . 9  |-  ( -u x  e.  RR  ->  (
-u x  e.  {
w  e.  RR  |  -u w  e.  A }  <->  -u -u x  e.  A
) )
1713, 16syl 14 . . . . . . . 8  |-  ( x  e.  RR  ->  ( -u x  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u -u x  e.  A ) )
18 recn 7900 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
1918negnegd 8214 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u -u x  =  x )
2019eleq1d 2239 . . . . . . . 8  |-  ( x  e.  RR  ->  ( -u -u x  e.  A  <->  x  e.  A ) )
2112, 17, 203bitrd 213 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  x  e.  A ) )
2221adantl 275 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  x  e.  A
) )
238, 9, 22eqrdav 2169 . . . . 5  |-  ( ph  ->  { z  e.  RR  |  -u z  e.  {
w  e.  RR  |  -u w  e.  A } }  =  A )
2423supeq1d 6962 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
2524negeqd 8107 . . 3  |-  ( ph  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  )  = 
-u sup ( A ,  RR ,  <  ) )
266, 25eqtrd 2203 . 2  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  ) )
27 lttri3 7992 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
2827adantl 275 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
2928, 3infclti 6998 . . . 4  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  RR )
3029recnd 7941 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  CC )
3128, 1supclti 6973 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
3231recnd 7941 . . 3  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  CC )
33 negcon2 8165 . . 3  |-  ( (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  CC  /\ 
sup ( A ,  RR ,  <  )  e.  CC )  ->  (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) ) )
3430, 32, 33syl2anc 409 . 2  |-  ( ph  ->  (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )
) )
3526, 34mpbid 146 1  |-  ( ph  ->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452    C_ wss 3121   class class class wbr 3987   supcsup 6957  infcinf 6958   CCcc 7765   RRcr 7766    < clt 7947   -ucneg 8084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-apti 7882  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-ltxr 7952  df-sub 8085  df-neg 8086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator