ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex Unicode version

Theorem supminfex 9662
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
supminfex.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
supminfex  |-  ( ph  ->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
Distinct variable groups:    w, A, x, y, z    ph, x, y, z
Allowed substitution hint:    ph( w)

Proof of Theorem supminfex
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
2 supminfex.ss . . . . 5  |-  ( ph  ->  A  C_  RR )
31, 2supinfneg 9660 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) )
4 ssrab2 3264 . . . . 5  |-  { w  e.  RR  |  -u w  e.  A }  C_  RR
54a1i 9 . . . 4  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  A }  C_  RR )
63, 5infrenegsupex 9659 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  ) )
7 elrabi 2913 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  ->  x  e.  RR )
87adantl 277 . . . . . 6  |-  ( (
ph  /\  x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } )  ->  x  e.  RR )
92sselda 3179 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
10 negeq 8212 . . . . . . . . . 10  |-  ( z  =  x  ->  -u z  =  -u x )
1110eleq1d 2262 . . . . . . . . 9  |-  ( z  =  x  ->  ( -u z  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u x  e. 
{ w  e.  RR  |  -u w  e.  A } ) )
1211elrab3 2917 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  -u x  e. 
{ w  e.  RR  |  -u w  e.  A } ) )
13 renegcl 8280 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u x  e.  RR )
14 negeq 8212 . . . . . . . . . . 11  |-  ( w  =  -u x  ->  -u w  =  -u -u x )
1514eleq1d 2262 . . . . . . . . . 10  |-  ( w  =  -u x  ->  ( -u w  e.  A  <->  -u -u x  e.  A ) )
1615elrab3 2917 . . . . . . . . 9  |-  ( -u x  e.  RR  ->  (
-u x  e.  {
w  e.  RR  |  -u w  e.  A }  <->  -u -u x  e.  A
) )
1713, 16syl 14 . . . . . . . 8  |-  ( x  e.  RR  ->  ( -u x  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u -u x  e.  A ) )
18 recn 8005 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
1918negnegd 8321 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u -u x  =  x )
2019eleq1d 2262 . . . . . . . 8  |-  ( x  e.  RR  ->  ( -u -u x  e.  A  <->  x  e.  A ) )
2112, 17, 203bitrd 214 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  x  e.  A ) )
2221adantl 277 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  x  e.  A
) )
238, 9, 22eqrdav 2192 . . . . 5  |-  ( ph  ->  { z  e.  RR  |  -u z  e.  {
w  e.  RR  |  -u w  e.  A } }  =  A )
2423supeq1d 7046 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
2524negeqd 8214 . . 3  |-  ( ph  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  )  = 
-u sup ( A ,  RR ,  <  ) )
266, 25eqtrd 2226 . 2  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  ) )
27 lttri3 8099 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
2827adantl 277 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
2928, 3infclti 7082 . . . 4  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  RR )
3029recnd 8048 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  CC )
3128, 1supclti 7057 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
3231recnd 8048 . . 3  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  CC )
33 negcon2 8272 . . 3  |-  ( (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  CC  /\ 
sup ( A ,  RR ,  <  )  e.  CC )  ->  (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) ) )
3430, 32, 33syl2anc 411 . 2  |-  ( ph  ->  (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )
) )
3526, 34mpbid 147 1  |-  ( ph  ->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3153   class class class wbr 4029   supcsup 7041  infcinf 7042   CCcc 7870   RRcr 7871    < clt 8054   -ucneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator