Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supminfex | Unicode version |
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.) |
Ref | Expression |
---|---|
supminfex.ex | |
supminfex.ss |
Ref | Expression |
---|---|
supminfex | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supminfex.ex | . . . . 5 | |
2 | supminfex.ss | . . . . 5 | |
3 | 1, 2 | supinfneg 9547 | . . . 4 |
4 | ssrab2 3232 | . . . . 5 | |
5 | 4 | a1i 9 | . . . 4 |
6 | 3, 5 | infrenegsupex 9546 | . . 3 inf |
7 | elrabi 2883 | . . . . . . 7 | |
8 | 7 | adantl 275 | . . . . . 6 |
9 | 2 | sselda 3147 | . . . . . 6 |
10 | negeq 8105 | . . . . . . . . . 10 | |
11 | 10 | eleq1d 2239 | . . . . . . . . 9 |
12 | 11 | elrab3 2887 | . . . . . . . 8 |
13 | renegcl 8173 | . . . . . . . . 9 | |
14 | negeq 8105 | . . . . . . . . . . 11 | |
15 | 14 | eleq1d 2239 | . . . . . . . . . 10 |
16 | 15 | elrab3 2887 | . . . . . . . . 9 |
17 | 13, 16 | syl 14 | . . . . . . . 8 |
18 | recn 7900 | . . . . . . . . . 10 | |
19 | 18 | negnegd 8214 | . . . . . . . . 9 |
20 | 19 | eleq1d 2239 | . . . . . . . 8 |
21 | 12, 17, 20 | 3bitrd 213 | . . . . . . 7 |
22 | 21 | adantl 275 | . . . . . 6 |
23 | 8, 9, 22 | eqrdav 2169 | . . . . 5 |
24 | 23 | supeq1d 6962 | . . . 4 |
25 | 24 | negeqd 8107 | . . 3 |
26 | 6, 25 | eqtrd 2203 | . 2 inf |
27 | lttri3 7992 | . . . . . 6 | |
28 | 27 | adantl 275 | . . . . 5 |
29 | 28, 3 | infclti 6998 | . . . 4 inf |
30 | 29 | recnd 7941 | . . 3 inf |
31 | 28, 1 | supclti 6973 | . . . 4 |
32 | 31 | recnd 7941 | . . 3 |
33 | negcon2 8165 | . . 3 inf inf inf | |
34 | 30, 32, 33 | syl2anc 409 | . 2 inf inf |
35 | 26, 34 | mpbid 146 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 wss 3121 class class class wbr 3987 csup 6957 infcinf 6958 cc 7765 cr 7766 clt 7947 cneg 8084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-apti 7882 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-sup 6959 df-inf 6960 df-pnf 7949 df-mnf 7950 df-ltxr 7952 df-sub 8085 df-neg 8086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |