| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > supminfex | Unicode version | ||
| Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| supminfex.ex | 
 | 
| supminfex.ss | 
 | 
| Ref | Expression | 
|---|---|
| supminfex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | supminfex.ex | 
. . . . 5
 | |
| 2 | supminfex.ss | 
. . . . 5
 | |
| 3 | 1, 2 | supinfneg 9669 | 
. . . 4
 | 
| 4 | ssrab2 3268 | 
. . . . 5
 | |
| 5 | 4 | a1i 9 | 
. . . 4
 | 
| 6 | 3, 5 | infrenegsupex 9668 | 
. . 3
 | 
| 7 | elrabi 2917 | 
. . . . . . 7
 | |
| 8 | 7 | adantl 277 | 
. . . . . 6
 | 
| 9 | 2 | sselda 3183 | 
. . . . . 6
 | 
| 10 | negeq 8219 | 
. . . . . . . . . 10
 | |
| 11 | 10 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 12 | 11 | elrab3 2921 | 
. . . . . . . 8
 | 
| 13 | renegcl 8287 | 
. . . . . . . . 9
 | |
| 14 | negeq 8219 | 
. . . . . . . . . . 11
 | |
| 15 | 14 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 16 | 15 | elrab3 2921 | 
. . . . . . . . 9
 | 
| 17 | 13, 16 | syl 14 | 
. . . . . . . 8
 | 
| 18 | recn 8012 | 
. . . . . . . . . 10
 | |
| 19 | 18 | negnegd 8328 | 
. . . . . . . . 9
 | 
| 20 | 19 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 21 | 12, 17, 20 | 3bitrd 214 | 
. . . . . . 7
 | 
| 22 | 21 | adantl 277 | 
. . . . . 6
 | 
| 23 | 8, 9, 22 | eqrdav 2195 | 
. . . . 5
 | 
| 24 | 23 | supeq1d 7053 | 
. . . 4
 | 
| 25 | 24 | negeqd 8221 | 
. . 3
 | 
| 26 | 6, 25 | eqtrd 2229 | 
. 2
 | 
| 27 | lttri3 8106 | 
. . . . . 6
 | |
| 28 | 27 | adantl 277 | 
. . . . 5
 | 
| 29 | 28, 3 | infclti 7089 | 
. . . 4
 | 
| 30 | 29 | recnd 8055 | 
. . 3
 | 
| 31 | 28, 1 | supclti 7064 | 
. . . 4
 | 
| 32 | 31 | recnd 8055 | 
. . 3
 | 
| 33 | negcon2 8279 | 
. . 3
 | |
| 34 | 30, 32, 33 | syl2anc 411 | 
. 2
 | 
| 35 | 26, 34 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-sub 8199 df-neg 8200 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |