Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supminfex | Unicode version |
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.) |
Ref | Expression |
---|---|
supminfex.ex | |
supminfex.ss |
Ref | Expression |
---|---|
supminfex | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supminfex.ex | . . . . 5 | |
2 | supminfex.ss | . . . . 5 | |
3 | 1, 2 | supinfneg 9554 | . . . 4 |
4 | ssrab2 3232 | . . . . 5 | |
5 | 4 | a1i 9 | . . . 4 |
6 | 3, 5 | infrenegsupex 9553 | . . 3 inf |
7 | elrabi 2883 | . . . . . . 7 | |
8 | 7 | adantl 275 | . . . . . 6 |
9 | 2 | sselda 3147 | . . . . . 6 |
10 | negeq 8112 | . . . . . . . . . 10 | |
11 | 10 | eleq1d 2239 | . . . . . . . . 9 |
12 | 11 | elrab3 2887 | . . . . . . . 8 |
13 | renegcl 8180 | . . . . . . . . 9 | |
14 | negeq 8112 | . . . . . . . . . . 11 | |
15 | 14 | eleq1d 2239 | . . . . . . . . . 10 |
16 | 15 | elrab3 2887 | . . . . . . . . 9 |
17 | 13, 16 | syl 14 | . . . . . . . 8 |
18 | recn 7907 | . . . . . . . . . 10 | |
19 | 18 | negnegd 8221 | . . . . . . . . 9 |
20 | 19 | eleq1d 2239 | . . . . . . . 8 |
21 | 12, 17, 20 | 3bitrd 213 | . . . . . . 7 |
22 | 21 | adantl 275 | . . . . . 6 |
23 | 8, 9, 22 | eqrdav 2169 | . . . . 5 |
24 | 23 | supeq1d 6964 | . . . 4 |
25 | 24 | negeqd 8114 | . . 3 |
26 | 6, 25 | eqtrd 2203 | . 2 inf |
27 | lttri3 7999 | . . . . . 6 | |
28 | 27 | adantl 275 | . . . . 5 |
29 | 28, 3 | infclti 7000 | . . . 4 inf |
30 | 29 | recnd 7948 | . . 3 inf |
31 | 28, 1 | supclti 6975 | . . . 4 |
32 | 31 | recnd 7948 | . . 3 |
33 | negcon2 8172 | . . 3 inf inf inf | |
34 | 30, 32, 33 | syl2anc 409 | . 2 inf inf |
35 | 26, 34 | mpbid 146 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 wss 3121 class class class wbr 3989 csup 6959 infcinf 6960 cc 7772 cr 7773 clt 7954 cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-sub 8092 df-neg 8093 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |