ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euim Unicode version

Theorem euim 2146
Description: Add existential unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
euim  |-  ( ( E. x ph  /\  A. x ( ph  ->  ps ) )  ->  ( E! x ps  ->  E! x ph ) )

Proof of Theorem euim
StepHypRef Expression
1 ax-1 6 . . 3  |-  ( E. x ph  ->  ( E! x ps  ->  E. x ph ) )
2 euimmo 2145 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( E! x ps  ->  E* x ph ) )
31, 2anim12ii 343 . 2  |-  ( ( E. x ph  /\  A. x ( ph  ->  ps ) )  ->  ( E! x ps  ->  ( E. x ph  /\  E* x ph ) ) )
4 eu5 2125 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
53, 4imbitrrdi 162 1  |-  ( ( E. x ph  /\  A. x ( ph  ->  ps ) )  ->  ( E! x ps  ->  E! x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393   E.wex 1538   E!weu 2077   E*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator