ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euimmo Unicode version

Theorem euimmo 2125
Description: Uniqueness implies "at most one" through implication. (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
euimmo  |-  ( A. x ( ph  ->  ps )  ->  ( E! x ps  ->  E* x ph ) )

Proof of Theorem euimmo
StepHypRef Expression
1 eumo 2089 . 2  |-  ( E! x ps  ->  E* x ps )
2 moim 2122 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( E* x ps  ->  E* x ph ) )
31, 2syl5 32 1  |-  ( A. x ( ph  ->  ps )  ->  ( E! x ps  ->  E* x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1373   E!weu 2057   E*wmo 2058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061
This theorem is referenced by:  euim  2126  2eumo  2146  reuss2  3464
  Copyright terms: Public domain W3C validator