ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euim GIF version

Theorem euim 2123
Description: Add existential unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
euim ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))

Proof of Theorem euim
StepHypRef Expression
1 ax-1 6 . . 3 (∃𝑥𝜑 → (∃!𝑥𝜓 → ∃𝑥𝜑))
2 euimmo 2122 . . 3 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑))
31, 2anim12ii 343 . 2 ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)))
4 eu5 2102 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
53, 4imbitrrdi 162 1 ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wex 1516  ∃!weu 2055  ∃*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator