| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euim | GIF version | ||
| Description: Add existential unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| euim | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ (∃𝑥𝜑 → (∃!𝑥𝜓 → ∃𝑥𝜑)) | |
| 2 | euimmo 2122 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) | |
| 3 | 1, 2 | anim12ii 343 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑))) |
| 4 | eu5 2102 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 5 | 3, 4 | imbitrrdi 162 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 ∃!weu 2055 ∃*wmo 2056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |