Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euim | GIF version |
Description: Add existential unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
euim | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (∃𝑥𝜑 → (∃!𝑥𝜓 → ∃𝑥𝜑)) | |
2 | euimmo 2091 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) | |
3 | 1, 2 | anim12ii 343 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑))) |
4 | eu5 2071 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
5 | 3, 4 | syl6ibr 162 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∃wex 1490 ∃!weu 2024 ∃*wmo 2025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |