Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euim | GIF version |
Description: Add existential unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
euim | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (∃𝑥𝜑 → (∃!𝑥𝜓 → ∃𝑥𝜑)) | |
2 | euimmo 2086 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) | |
3 | 1, 2 | anim12ii 341 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑))) |
4 | eu5 2066 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
5 | 3, 4 | syl6ibr 161 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 ∃!weu 2019 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |