ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euim GIF version

Theorem euim 2113
Description: Add existential unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
euim ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))

Proof of Theorem euim
StepHypRef Expression
1 ax-1 6 . . 3 (∃𝑥𝜑 → (∃!𝑥𝜓 → ∃𝑥𝜑))
2 euimmo 2112 . . 3 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑))
31, 2anim12ii 343 . 2 ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)))
4 eu5 2092 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
53, 4imbitrrdi 162 1 ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  wex 1506  ∃!weu 2045  ∃*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator