| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu5 | Unicode version | ||
| Description: Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
| Ref | Expression |
|---|---|
| eu5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2084 |
. . 3
| |
| 2 | eumo 2086 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | df-mo 2058 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 5 | imp 124 |
. . 3
|
| 7 | 6 | ancoms 268 |
. 2
|
| 8 | 3, 7 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 |
| This theorem is referenced by: exmoeu2 2102 euan 2110 eu4 2116 euim 2122 euexex 2139 2euex 2141 2euswapdc 2145 2exeu 2146 reu5 2723 reuss2 3453 funcnv3 5336 fnres 5392 fnopabg 5399 brprcneu 5569 dff3im 5725 recmulnqg 7504 uptx 14746 |
| Copyright terms: Public domain | W3C validator |