| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu5 | Unicode version | ||
| Description: Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
| Ref | Expression |
|---|---|
| eu5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2085 |
. . 3
| |
| 2 | eumo 2087 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | df-mo 2059 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 5 | imp 124 |
. . 3
|
| 7 | 6 | ancoms 268 |
. 2
|
| 8 | 3, 7 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: exmoeu2 2104 euan 2112 eu4 2118 euim 2124 euexex 2141 2euex 2143 2euswapdc 2147 2exeu 2148 reu5 2726 reuss2 3461 funcnv3 5355 fnres 5412 fnopabg 5419 brprcneu 5592 dff3im 5748 recmulnqg 7539 uptx 14861 |
| Copyright terms: Public domain | W3C validator |