Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eu5 | Unicode version |
Description: Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
Ref | Expression |
---|---|
eu5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2044 | . . 3 | |
2 | eumo 2046 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | df-mo 2018 | . . . . 5 | |
5 | 4 | biimpi 119 | . . . 4 |
6 | 5 | imp 123 | . . 3 |
7 | 6 | ancoms 266 | . 2 |
8 | 3, 7 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 weu 2014 wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: exmoeu2 2062 euan 2070 eu4 2076 euim 2082 euexex 2099 2euex 2101 2euswapdc 2105 2exeu 2106 reu5 2678 reuss2 3402 funcnv3 5250 fnres 5304 fnopabg 5311 brprcneu 5479 dff3im 5630 recmulnqg 7332 uptx 12914 |
Copyright terms: Public domain | W3C validator |