Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eu5 | Unicode version |
Description: Uniqueness in terms of "at most one." (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
Ref | Expression |
---|---|
eu5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2036 | . . 3 | |
2 | eumo 2038 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | df-mo 2010 | . . . . 5 | |
5 | 4 | biimpi 119 | . . . 4 |
6 | 5 | imp 123 | . . 3 |
7 | 6 | ancoms 266 | . 2 |
8 | 3, 7 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1472 weu 2006 wmo 2007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 |
This theorem is referenced by: exmoeu2 2054 euan 2062 eu4 2068 euim 2074 euexex 2091 2euex 2093 2euswapdc 2097 2exeu 2098 reu5 2669 reuss2 3387 funcnv3 5233 fnres 5287 fnopabg 5294 brprcneu 5462 dff3im 5613 recmulnqg 7312 uptx 12716 |
Copyright terms: Public domain | W3C validator |