ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssr Unicode version

Theorem nssr 3216
Description: Negation of subclass relationship. One direction of Exercise 13 of [TakeutiZaring] p. 18. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
nssr  |-  ( E. x ( x  e.  A  /\  -.  x  e.  B )  ->  -.  A  C_  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem nssr
StepHypRef Expression
1 exanaliim 1647 . 2  |-  ( E. x ( x  e.  A  /\  -.  x  e.  B )  ->  -.  A. x ( x  e.  A  ->  x  e.  B ) )
2 dfss2 3145 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
31, 2sylnibr 677 1  |-  ( E. x ( x  e.  A  /\  -.  x  e.  B )  ->  -.  A  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1492    e. wcel 2148    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3136  df-ss 3143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator