ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssssr Unicode version

Theorem nssssr 4240
Description: Negation of subclass relationship. Compare nssr 3230. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
nssssr  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem nssssr
StepHypRef Expression
1 exanaliim 1658 . 2  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A. x ( x  C_  A  ->  x  C_  B
) )
2 ssextss 4238 . 2  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
31, 2sylnibr 678 1  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1503    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator