ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssssr Unicode version

Theorem nssssr 4271
Description: Negation of subclass relationship. Compare nssr 3255. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
nssssr  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem nssssr
StepHypRef Expression
1 exanaliim 1671 . 2  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A. x ( x  C_  A  ->  x  C_  B
) )
2 ssextss 4269 . 2  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
31, 2sylnibr 679 1  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1371   E.wex 1516    C_ wss 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator