ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssssr Unicode version

Theorem nssssr 4255
Description: Negation of subclass relationship. Compare nssr 3243. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
nssssr  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem nssssr
StepHypRef Expression
1 exanaliim 1661 . 2  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A. x ( x  C_  A  ->  x  C_  B
) )
2 ssextss 4253 . 2  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
31, 2sylnibr 678 1  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1506    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator