ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nssssr Unicode version

Theorem nssssr 4200
Description: Negation of subclass relationship. Compare nssr 3202. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
nssssr  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem nssssr
StepHypRef Expression
1 exanaliim 1635 . 2  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A. x ( x  C_  A  ->  x  C_  B
) )
2 ssextss 4198 . 2  |-  ( A 
C_  B  <->  A. x
( x  C_  A  ->  x  C_  B )
)
31, 2sylnibr 667 1  |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator