Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brprcneu | Unicode version |
Description: If is a proper class and is any class, then there is no unique set which is related to through the binary relation . (Contributed by Scott Fenton, 7-Oct-2017.) |
Ref | Expression |
---|---|
brprcneu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtruex 4536 | . . . . . . . . 9 | |
2 | equcom 1694 | . . . . . . . . . . 11 | |
3 | 2 | notbii 658 | . . . . . . . . . 10 |
4 | 3 | exbii 1593 | . . . . . . . . 9 |
5 | 1, 4 | mpbir 145 | . . . . . . . 8 |
6 | 5 | jctr 313 | . . . . . . 7 |
7 | 19.42v 1894 | . . . . . . 7 | |
8 | 6, 7 | sylibr 133 | . . . . . 6 |
9 | opprc1 3780 | . . . . . . . 8 | |
10 | 9 | eleq1d 2235 | . . . . . . 7 |
11 | opprc1 3780 | . . . . . . . . . . . 12 | |
12 | 11 | eleq1d 2235 | . . . . . . . . . . 11 |
13 | 10, 12 | anbi12d 465 | . . . . . . . . . 10 |
14 | anidm 394 | . . . . . . . . . 10 | |
15 | 13, 14 | bitrdi 195 | . . . . . . . . 9 |
16 | 15 | anbi1d 461 | . . . . . . . 8 |
17 | 16 | exbidv 1813 | . . . . . . 7 |
18 | 10, 17 | imbi12d 233 | . . . . . 6 |
19 | 8, 18 | mpbiri 167 | . . . . 5 |
20 | df-br 3983 | . . . . 5 | |
21 | df-br 3983 | . . . . . . . 8 | |
22 | 20, 21 | anbi12i 456 | . . . . . . 7 |
23 | 22 | anbi1i 454 | . . . . . 6 |
24 | 23 | exbii 1593 | . . . . 5 |
25 | 19, 20, 24 | 3imtr4g 204 | . . . 4 |
26 | 25 | eximdv 1868 | . . 3 |
27 | exanaliim 1635 | . . . . . 6 | |
28 | 27 | eximi 1588 | . . . . 5 |
29 | exnalim 1634 | . . . . 5 | |
30 | 28, 29 | syl 14 | . . . 4 |
31 | breq2 3986 | . . . . . 6 | |
32 | 31 | mo4 2075 | . . . . 5 |
33 | 32 | notbii 658 | . . . 4 |
34 | 30, 33 | sylibr 133 | . . 3 |
35 | 26, 34 | syl6 33 | . 2 |
36 | eu5 2061 | . . . 4 | |
37 | 36 | notbii 658 | . . 3 |
38 | imnan 680 | . . 3 | |
39 | 37, 38 | bitr4i 186 | . 2 |
40 | 35, 39 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1341 wex 1480 weu 2014 wmo 2015 wcel 2136 cvv 2726 c0 3409 cop 3579 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: fvprc 5480 |
Copyright terms: Public domain | W3C validator |