| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brprcneu | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| brprcneu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruex 4625 |
. . . . . . . . 9
| |
| 2 | equcom 1730 |
. . . . . . . . . . 11
| |
| 3 | 2 | notbii 670 |
. . . . . . . . . 10
|
| 4 | 3 | exbii 1629 |
. . . . . . . . 9
|
| 5 | 1, 4 | mpbir 146 |
. . . . . . . 8
|
| 6 | 5 | jctr 315 |
. . . . . . 7
|
| 7 | 19.42v 1931 |
. . . . . . 7
| |
| 8 | 6, 7 | sylibr 134 |
. . . . . 6
|
| 9 | opprc1 3855 |
. . . . . . . 8
| |
| 10 | 9 | eleq1d 2276 |
. . . . . . 7
|
| 11 | opprc1 3855 |
. . . . . . . . . . . 12
| |
| 12 | 11 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 13 | 10, 12 | anbi12d 473 |
. . . . . . . . . 10
|
| 14 | anidm 396 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | bitrdi 196 |
. . . . . . . . 9
|
| 16 | 15 | anbi1d 465 |
. . . . . . . 8
|
| 17 | 16 | exbidv 1849 |
. . . . . . 7
|
| 18 | 10, 17 | imbi12d 234 |
. . . . . 6
|
| 19 | 8, 18 | mpbiri 168 |
. . . . 5
|
| 20 | df-br 4060 |
. . . . 5
| |
| 21 | df-br 4060 |
. . . . . . . 8
| |
| 22 | 20, 21 | anbi12i 460 |
. . . . . . 7
|
| 23 | 22 | anbi1i 458 |
. . . . . 6
|
| 24 | 23 | exbii 1629 |
. . . . 5
|
| 25 | 19, 20, 24 | 3imtr4g 205 |
. . . 4
|
| 26 | 25 | eximdv 1904 |
. . 3
|
| 27 | exanaliim 1671 |
. . . . . 6
| |
| 28 | 27 | eximi 1624 |
. . . . 5
|
| 29 | exnalim 1670 |
. . . . 5
| |
| 30 | 28, 29 | syl 14 |
. . . 4
|
| 31 | breq2 4063 |
. . . . . 6
| |
| 32 | 31 | mo4 2117 |
. . . . 5
|
| 33 | 32 | notbii 670 |
. . . 4
|
| 34 | 30, 33 | sylibr 134 |
. . 3
|
| 35 | 26, 34 | syl6 33 |
. 2
|
| 36 | eu5 2103 |
. . . 4
| |
| 37 | 36 | notbii 670 |
. . 3
|
| 38 | imnan 692 |
. . 3
| |
| 39 | 37, 38 | bitr4i 187 |
. 2
|
| 40 | 35, 39 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: fvprc 5593 |
| Copyright terms: Public domain | W3C validator |