Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brprcneu | Unicode version |
Description: If is a proper class and is any class, then there is no unique set which is related to through the binary relation . (Contributed by Scott Fenton, 7-Oct-2017.) |
Ref | Expression |
---|---|
brprcneu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtruex 4543 | . . . . . . . . 9 | |
2 | equcom 1699 | . . . . . . . . . . 11 | |
3 | 2 | notbii 663 | . . . . . . . . . 10 |
4 | 3 | exbii 1598 | . . . . . . . . 9 |
5 | 1, 4 | mpbir 145 | . . . . . . . 8 |
6 | 5 | jctr 313 | . . . . . . 7 |
7 | 19.42v 1899 | . . . . . . 7 | |
8 | 6, 7 | sylibr 133 | . . . . . 6 |
9 | opprc1 3787 | . . . . . . . 8 | |
10 | 9 | eleq1d 2239 | . . . . . . 7 |
11 | opprc1 3787 | . . . . . . . . . . . 12 | |
12 | 11 | eleq1d 2239 | . . . . . . . . . . 11 |
13 | 10, 12 | anbi12d 470 | . . . . . . . . . 10 |
14 | anidm 394 | . . . . . . . . . 10 | |
15 | 13, 14 | bitrdi 195 | . . . . . . . . 9 |
16 | 15 | anbi1d 462 | . . . . . . . 8 |
17 | 16 | exbidv 1818 | . . . . . . 7 |
18 | 10, 17 | imbi12d 233 | . . . . . 6 |
19 | 8, 18 | mpbiri 167 | . . . . 5 |
20 | df-br 3990 | . . . . 5 | |
21 | df-br 3990 | . . . . . . . 8 | |
22 | 20, 21 | anbi12i 457 | . . . . . . 7 |
23 | 22 | anbi1i 455 | . . . . . 6 |
24 | 23 | exbii 1598 | . . . . 5 |
25 | 19, 20, 24 | 3imtr4g 204 | . . . 4 |
26 | 25 | eximdv 1873 | . . 3 |
27 | exanaliim 1640 | . . . . . 6 | |
28 | 27 | eximi 1593 | . . . . 5 |
29 | exnalim 1639 | . . . . 5 | |
30 | 28, 29 | syl 14 | . . . 4 |
31 | breq2 3993 | . . . . . 6 | |
32 | 31 | mo4 2080 | . . . . 5 |
33 | 32 | notbii 663 | . . . 4 |
34 | 30, 33 | sylibr 133 | . . 3 |
35 | 26, 34 | syl6 33 | . 2 |
36 | eu5 2066 | . . . 4 | |
37 | 36 | notbii 663 | . . 3 |
38 | imnan 685 | . . 3 | |
39 | 37, 38 | bitr4i 186 | . 2 |
40 | 35, 39 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1346 wex 1485 weu 2019 wmo 2020 wcel 2141 cvv 2730 c0 3414 cop 3586 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: fvprc 5490 |
Copyright terms: Public domain | W3C validator |