ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brprcneu Unicode version

Theorem brprcneu 5282
Description: If  A is a proper class and  F is any class, then there is no unique set which is related to  A through the binary relation  F. (Contributed by Scott Fenton, 7-Oct-2017.)
Assertion
Ref Expression
brprcneu  |-  ( -.  A  e.  _V  ->  -.  E! x  A F x )
Distinct variable groups:    x, A    x, F

Proof of Theorem brprcneu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dtruex 4365 . . . . . . . . 9  |-  E. y  -.  y  =  x
2 equcom 1639 . . . . . . . . . . 11  |-  ( x  =  y  <->  y  =  x )
32notbii 629 . . . . . . . . . 10  |-  ( -.  x  =  y  <->  -.  y  =  x )
43exbii 1541 . . . . . . . . 9  |-  ( E. y  -.  x  =  y  <->  E. y  -.  y  =  x )
51, 4mpbir 144 . . . . . . . 8  |-  E. y  -.  x  =  y
65jctr 308 . . . . . . 7  |-  ( (/)  e.  F  ->  ( (/)  e.  F  /\  E. y  -.  x  =  y
) )
7 19.42v 1834 . . . . . . 7  |-  ( E. y ( (/)  e.  F  /\  -.  x  =  y )  <->  ( (/)  e.  F  /\  E. y  -.  x  =  y ) )
86, 7sylibr 132 . . . . . 6  |-  ( (/)  e.  F  ->  E. y
( (/)  e.  F  /\  -.  x  =  y
) )
9 opprc1 3639 . . . . . . . 8  |-  ( -.  A  e.  _V  ->  <. A ,  x >.  =  (/) )
109eleq1d 2156 . . . . . . 7  |-  ( -.  A  e.  _V  ->  (
<. A ,  x >.  e.  F  <->  (/)  e.  F ) )
11 opprc1 3639 . . . . . . . . . . . 12  |-  ( -.  A  e.  _V  ->  <. A ,  y >.  =  (/) )
1211eleq1d 2156 . . . . . . . . . . 11  |-  ( -.  A  e.  _V  ->  (
<. A ,  y >.  e.  F  <->  (/)  e.  F ) )
1310, 12anbi12d 457 . . . . . . . . . 10  |-  ( -.  A  e.  _V  ->  ( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F
)  <->  ( (/)  e.  F  /\  (/)  e.  F ) ) )
14 anidm 388 . . . . . . . . . 10  |-  ( (
(/)  e.  F  /\  (/) 
e.  F )  <->  (/)  e.  F
)
1513, 14syl6bb 194 . . . . . . . . 9  |-  ( -.  A  e.  _V  ->  ( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F
)  <->  (/)  e.  F ) )
1615anbi1d 453 . . . . . . . 8  |-  ( -.  A  e.  _V  ->  ( ( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F )  /\  -.  x  =  y )  <->  (
(/)  e.  F  /\  -.  x  =  y
) ) )
1716exbidv 1753 . . . . . . 7  |-  ( -.  A  e.  _V  ->  ( E. y ( (
<. A ,  x >.  e.  F  /\  <. A , 
y >.  e.  F )  /\  -.  x  =  y )  <->  E. y
( (/)  e.  F  /\  -.  x  =  y
) ) )
1810, 17imbi12d 232 . . . . . 6  |-  ( -.  A  e.  _V  ->  ( ( <. A ,  x >.  e.  F  ->  E. y
( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F )  /\  -.  x  =  y )
)  <->  ( (/)  e.  F  ->  E. y ( (/)  e.  F  /\  -.  x  =  y ) ) ) )
198, 18mpbiri 166 . . . . 5  |-  ( -.  A  e.  _V  ->  (
<. A ,  x >.  e.  F  ->  E. y
( ( <. A ,  x >.  e.  F  /\  <. A ,  y >.  e.  F )  /\  -.  x  =  y )
) )
20 df-br 3838 . . . . 5  |-  ( A F x  <->  <. A ,  x >.  e.  F )
21 df-br 3838 . . . . . . . 8  |-  ( A F y  <->  <. A , 
y >.  e.  F )
2220, 21anbi12i 448 . . . . . . 7  |-  ( ( A F x  /\  A F y )  <->  ( <. A ,  x >.  e.  F  /\  <. A ,  y
>.  e.  F ) )
2322anbi1i 446 . . . . . 6  |-  ( ( ( A F x  /\  A F y )  /\  -.  x  =  y )  <->  ( ( <. A ,  x >.  e.  F  /\  <. A , 
y >.  e.  F )  /\  -.  x  =  y ) )
2423exbii 1541 . . . . 5  |-  ( E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y
)  <->  E. y ( (
<. A ,  x >.  e.  F  /\  <. A , 
y >.  e.  F )  /\  -.  x  =  y ) )
2519, 20, 243imtr4g 203 . . . 4  |-  ( -.  A  e.  _V  ->  ( A F x  ->  E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y
) ) )
2625eximdv 1808 . . 3  |-  ( -.  A  e.  _V  ->  ( E. x  A F x  ->  E. x E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y
) ) )
27 exanaliim 1583 . . . . . 6  |-  ( E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y
)  ->  -.  A. y
( ( A F x  /\  A F y )  ->  x  =  y ) )
2827eximi 1536 . . . . 5  |-  ( E. x E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y )  ->  E. x  -.  A. y
( ( A F x  /\  A F y )  ->  x  =  y ) )
29 exnalim 1582 . . . . 5  |-  ( E. x  -.  A. y
( ( A F x  /\  A F y )  ->  x  =  y )  ->  -.  A. x A. y
( ( A F x  /\  A F y )  ->  x  =  y ) )
3028, 29syl 14 . . . 4  |-  ( E. x E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y )  ->  -.  A. x A. y
( ( A F x  /\  A F y )  ->  x  =  y ) )
31 breq2 3841 . . . . . 6  |-  ( x  =  y  ->  ( A F x  <->  A F
y ) )
3231mo4 2009 . . . . 5  |-  ( E* x  A F x  <->  A. x A. y ( ( A F x  /\  A F y )  ->  x  =  y ) )
3332notbii 629 . . . 4  |-  ( -. 
E* x  A F x  <->  -.  A. x A. y ( ( A F x  /\  A F y )  ->  x  =  y )
)
3430, 33sylibr 132 . . 3  |-  ( E. x E. y ( ( A F x  /\  A F y )  /\  -.  x  =  y )  ->  -.  E* x  A F x )
3526, 34syl6 33 . 2  |-  ( -.  A  e.  _V  ->  ( E. x  A F x  ->  -.  E* x  A F x ) )
36 eu5 1995 . . . 4  |-  ( E! x  A F x  <-> 
( E. x  A F x  /\  E* x  A F x ) )
3736notbii 629 . . 3  |-  ( -.  E! x  A F x  <->  -.  ( E. x  A F x  /\  E* x  A F x ) )
38 imnan 659 . . 3  |-  ( ( E. x  A F x  ->  -.  E* x  A F x )  <->  -.  ( E. x  A F x  /\  E* x  A F x ) )
3937, 38bitr4i 185 . 2  |-  ( -.  E! x  A F x  <->  ( E. x  A F x  ->  -.  E* x  A F x ) )
4035, 39sylibr 132 1  |-  ( -.  A  e.  _V  ->  -.  E! x  A F x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102   A.wal 1287   E.wex 1426    e. wcel 1438   E!weu 1948   E*wmo 1949   _Vcvv 2619   (/)c0 3284   <.cop 3444   class class class wbr 3837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838
This theorem is referenced by:  fvprc  5283
  Copyright terms: Public domain W3C validator