| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brprcneu | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| brprcneu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruex 4595 |
. . . . . . . . 9
| |
| 2 | equcom 1720 |
. . . . . . . . . . 11
| |
| 3 | 2 | notbii 669 |
. . . . . . . . . 10
|
| 4 | 3 | exbii 1619 |
. . . . . . . . 9
|
| 5 | 1, 4 | mpbir 146 |
. . . . . . . 8
|
| 6 | 5 | jctr 315 |
. . . . . . 7
|
| 7 | 19.42v 1921 |
. . . . . . 7
| |
| 8 | 6, 7 | sylibr 134 |
. . . . . 6
|
| 9 | opprc1 3830 |
. . . . . . . 8
| |
| 10 | 9 | eleq1d 2265 |
. . . . . . 7
|
| 11 | opprc1 3830 |
. . . . . . . . . . . 12
| |
| 12 | 11 | eleq1d 2265 |
. . . . . . . . . . 11
|
| 13 | 10, 12 | anbi12d 473 |
. . . . . . . . . 10
|
| 14 | anidm 396 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | bitrdi 196 |
. . . . . . . . 9
|
| 16 | 15 | anbi1d 465 |
. . . . . . . 8
|
| 17 | 16 | exbidv 1839 |
. . . . . . 7
|
| 18 | 10, 17 | imbi12d 234 |
. . . . . 6
|
| 19 | 8, 18 | mpbiri 168 |
. . . . 5
|
| 20 | df-br 4034 |
. . . . 5
| |
| 21 | df-br 4034 |
. . . . . . . 8
| |
| 22 | 20, 21 | anbi12i 460 |
. . . . . . 7
|
| 23 | 22 | anbi1i 458 |
. . . . . 6
|
| 24 | 23 | exbii 1619 |
. . . . 5
|
| 25 | 19, 20, 24 | 3imtr4g 205 |
. . . 4
|
| 26 | 25 | eximdv 1894 |
. . 3
|
| 27 | exanaliim 1661 |
. . . . . 6
| |
| 28 | 27 | eximi 1614 |
. . . . 5
|
| 29 | exnalim 1660 |
. . . . 5
| |
| 30 | 28, 29 | syl 14 |
. . . 4
|
| 31 | breq2 4037 |
. . . . . 6
| |
| 32 | 31 | mo4 2106 |
. . . . 5
|
| 33 | 32 | notbii 669 |
. . . 4
|
| 34 | 30, 33 | sylibr 134 |
. . 3
|
| 35 | 26, 34 | syl6 33 |
. 2
|
| 36 | eu5 2092 |
. . . 4
| |
| 37 | 36 | notbii 669 |
. . 3
|
| 38 | imnan 691 |
. . 3
| |
| 39 | 37, 38 | bitr4i 187 |
. 2
|
| 40 | 35, 39 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
| This theorem is referenced by: fvprc 5552 |
| Copyright terms: Public domain | W3C validator |