| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | Unicode version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 |
|
| Ref | Expression |
|---|---|
| exlimdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. 2
| |
| 2 | ax-17 1549 |
. 2
| |
| 3 | exlimdv.1 |
. 2
| |
| 4 | 1, 2, 3 | exlimdh 1619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1470 ax-gen 1472 ax-ie2 1517 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1843 exlimdvv 1921 exlimddv 1922 tpid3g 3748 sssnm 3795 pwntru 4244 euotd 4300 ralxfr2d 4512 rexxfr2d 4513 releldmb 4916 relelrnb 4917 elres 4996 iss 5006 imain 5357 elunirn 5837 ovmpt4g 6070 oprssdmm 6259 op1steq 6267 fo2ndf 6315 reldmtpos 6341 rntpos 6345 tfrlemibacc 6414 tfrlemibxssdm 6415 tfrlemibfn 6416 tfrexlem 6422 tfr1onlembacc 6430 tfr1onlembxssdm 6431 tfr1onlembfn 6432 tfrcllembacc 6443 tfrcllembxssdm 6444 tfrcllembfn 6445 map0g 6777 xpdom3m 6931 phplem4 6954 phpm 6964 findcard2 6988 findcard2s 6989 ac6sfi 6997 fiintim 7030 xpfi 7031 fidcenum 7060 ordiso 7140 ctmlemr 7212 ctm 7213 ctssdc 7217 pm54.43 7300 exmidfodomrlemim 7311 recclnq 7507 ltexnqq 7523 ltbtwnnqq 7530 recexprlemss1l 7750 recexprlemss1u 7751 negm 9738 ioom 10405 seq3f1olemp 10662 fiinfnf1o 10933 fihashf1rn 10935 climcau 11691 summodclem2 11726 zsumdc 11728 isumz 11733 fsumf1o 11734 fisumss 11736 fsumcl2lem 11742 fsumadd 11750 fsummulc2 11792 ntrivcvgap 11892 prodmodclem2 11921 zproddc 11923 prod1dc 11930 fprodf1o 11932 fprodssdc 11934 fprodmul 11935 nnmindc 12388 uzwodc 12391 pceu 12651 4sqlemafi 12751 4sqlem12 12758 ennnfone 12829 enctlem 12836 unct 12846 gsumfzval 13256 sgrpidmndm 13285 subrngintm 14007 subrgintm 14038 islssm 14152 lss0cl 14164 islidlm 14274 eltg3 14562 tgtop 14573 tgidm 14579 tgrest 14674 tgcn 14713 xblm 14922 dvfgg 15193 dvcnp2cntop 15204 2lgslem1 15601 pwtrufal 15971 |
| Copyright terms: Public domain | W3C validator |