Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimdv | Unicode version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
exlimdv.1 |
Ref | Expression |
---|---|
exlimdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1506 | . 2 | |
2 | ax-17 1506 | . 2 | |
3 | exlimdv.1 | . 2 | |
4 | 1, 2, 3 | exlimdh 1576 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-5 1427 ax-gen 1429 ax-ie2 1474 ax-17 1506 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v2 1800 exlimdvv 1877 exlimddv 1878 tpid3g 3674 sssnm 3717 pwntru 4160 euotd 4214 ralxfr2d 4423 rexxfr2d 4424 releldmb 4822 relelrnb 4823 elres 4901 iss 4911 imain 5251 elunirn 5713 ovmpt4g 5940 oprssdmm 6116 op1steq 6124 fo2ndf 6171 reldmtpos 6197 rntpos 6201 tfrlemibacc 6270 tfrlemibxssdm 6271 tfrlemibfn 6272 tfrexlem 6278 tfr1onlembacc 6286 tfr1onlembxssdm 6287 tfr1onlembfn 6288 tfrcllembacc 6299 tfrcllembxssdm 6300 tfrcllembfn 6301 map0g 6630 xpdom3m 6776 phplem4 6797 phpm 6807 findcard2 6831 findcard2s 6832 ac6sfi 6840 fiintim 6870 xpfi 6871 fidcenum 6897 ordiso 6974 ctmlemr 7046 ctm 7047 ctssdc 7051 pm54.43 7119 exmidfodomrlemim 7130 recclnq 7306 ltexnqq 7322 ltbtwnnqq 7329 recexprlemss1l 7549 recexprlemss1u 7550 negm 9517 ioom 10153 seq3f1olemp 10394 fiinfnf1o 10653 fihashf1rn 10656 climcau 11237 summodclem2 11272 zsumdc 11274 isumz 11279 fsumf1o 11280 fisumss 11282 fsumcl2lem 11288 fsumadd 11296 fsummulc2 11338 ntrivcvgap 11438 prodmodclem2 11467 zproddc 11469 prod1dc 11476 fprodf1o 11478 fprodssdc 11480 fprodmul 11481 ennnfone 12137 enctlem 12144 unct 12154 eltg3 12428 tgtop 12439 tgidm 12445 tgrest 12540 tgcn 12579 xblm 12788 dvfgg 13028 dvcnp2cntop 13034 pwtrufal 13540 |
Copyright terms: Public domain | W3C validator |