![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimdv | Unicode version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
exlimdv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimdv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-17 1537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | exlimdv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | exlimdh 1607 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1458 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v2 1831 exlimdvv 1909 exlimddv 1910 tpid3g 3734 sssnm 3781 pwntru 4229 euotd 4284 ralxfr2d 4496 rexxfr2d 4497 releldmb 4900 relelrnb 4901 elres 4979 iss 4989 imain 5337 elunirn 5810 ovmpt4g 6042 oprssdmm 6226 op1steq 6234 fo2ndf 6282 reldmtpos 6308 rntpos 6312 tfrlemibacc 6381 tfrlemibxssdm 6382 tfrlemibfn 6383 tfrexlem 6389 tfr1onlembacc 6397 tfr1onlembxssdm 6398 tfr1onlembfn 6399 tfrcllembacc 6410 tfrcllembxssdm 6411 tfrcllembfn 6412 map0g 6744 xpdom3m 6890 phplem4 6913 phpm 6923 findcard2 6947 findcard2s 6948 ac6sfi 6956 fiintim 6987 xpfi 6988 fidcenum 7017 ordiso 7097 ctmlemr 7169 ctm 7170 ctssdc 7174 pm54.43 7252 exmidfodomrlemim 7263 recclnq 7454 ltexnqq 7470 ltbtwnnqq 7477 recexprlemss1l 7697 recexprlemss1u 7698 negm 9683 ioom 10332 seq3f1olemp 10589 fiinfnf1o 10860 fihashf1rn 10862 climcau 11493 summodclem2 11528 zsumdc 11530 isumz 11535 fsumf1o 11536 fisumss 11538 fsumcl2lem 11544 fsumadd 11552 fsummulc2 11594 ntrivcvgap 11694 prodmodclem2 11723 zproddc 11725 prod1dc 11732 fprodf1o 11734 fprodssdc 11736 fprodmul 11737 nnmindc 12174 uzwodc 12177 pceu 12436 4sqlemafi 12536 4sqlem12 12543 ennnfone 12585 enctlem 12592 unct 12602 gsumfzval 12977 sgrpidmndm 13004 subrngintm 13711 subrgintm 13742 islssm 13856 lss0cl 13868 islidlm 13978 eltg3 14236 tgtop 14247 tgidm 14253 tgrest 14348 tgcn 14387 xblm 14596 dvfgg 14867 dvcnp2cntop 14878 2lgslem1 15248 pwtrufal 15558 |
Copyright terms: Public domain | W3C validator |