| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | Unicode version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 |
|
| Ref | Expression |
|---|---|
| exlimdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 |
. 2
| |
| 2 | ax-17 1550 |
. 2
| |
| 3 | exlimdv.1 |
. 2
| |
| 4 | 1, 2, 3 | exlimdh 1620 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1471 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1844 exlimdvv 1922 exlimddv 1923 tpid3g 3758 sssnm 3808 pwntru 4259 euotd 4317 ralxfr2d 4529 rexxfr2d 4530 releldmb 4934 relelrnb 4935 elres 5014 iss 5024 imain 5375 elunirn 5858 ovmpt4g 6091 oprssdmm 6280 op1steq 6288 fo2ndf 6336 reldmtpos 6362 rntpos 6366 tfrlemibacc 6435 tfrlemibxssdm 6436 tfrlemibfn 6437 tfrexlem 6443 tfr1onlembacc 6451 tfr1onlembxssdm 6452 tfr1onlembfn 6453 tfrcllembacc 6464 tfrcllembxssdm 6465 tfrcllembfn 6466 map0g 6798 xpdom3m 6954 phplem4 6977 phpm 6988 findcard2 7012 findcard2s 7013 ac6sfi 7021 fiintim 7054 xpfi 7055 fidcenum 7084 ordiso 7164 ctmlemr 7236 ctm 7237 ctssdc 7241 pm54.43 7324 exmidfodomrlemim 7340 iftrueb01 7369 pw1m 7370 recclnq 7540 ltexnqq 7556 ltbtwnnqq 7563 recexprlemss1l 7783 recexprlemss1u 7784 negm 9771 ioom 10440 seq3f1olemp 10697 fiinfnf1o 10968 fihashf1rn 10970 climcau 11773 summodclem2 11808 zsumdc 11810 isumz 11815 fsumf1o 11816 fisumss 11818 fsumcl2lem 11824 fsumadd 11832 fsummulc2 11874 ntrivcvgap 11974 prodmodclem2 12003 zproddc 12005 prod1dc 12012 fprodf1o 12014 fprodssdc 12016 fprodmul 12017 nnmindc 12470 uzwodc 12473 pceu 12733 4sqlemafi 12833 4sqlem12 12840 ennnfone 12911 enctlem 12918 unct 12928 gsumfzval 13338 sgrpidmndm 13367 subrngintm 14089 subrgintm 14120 islssm 14234 lss0cl 14246 islidlm 14356 eltg3 14644 tgtop 14655 tgidm 14661 tgrest 14756 tgcn 14795 xblm 15004 dvfgg 15275 dvcnp2cntop 15286 2lgslem1 15683 dom1o 16128 pwtrufal 16136 |
| Copyright terms: Public domain | W3C validator |