Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimdv | Unicode version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
exlimdv.1 |
Ref | Expression |
---|---|
exlimdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 | |
2 | ax-17 1514 | . 2 | |
3 | exlimdv.1 | . 2 | |
4 | 1, 2, 3 | exlimdh 1584 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-17 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v2 1808 exlimdvv 1885 exlimddv 1886 tpid3g 3690 sssnm 3733 pwntru 4177 euotd 4231 ralxfr2d 4441 rexxfr2d 4442 releldmb 4840 relelrnb 4841 elres 4919 iss 4929 imain 5269 elunirn 5733 ovmpt4g 5960 oprssdmm 6136 op1steq 6144 fo2ndf 6191 reldmtpos 6217 rntpos 6221 tfrlemibacc 6290 tfrlemibxssdm 6291 tfrlemibfn 6292 tfrexlem 6298 tfr1onlembacc 6306 tfr1onlembxssdm 6307 tfr1onlembfn 6308 tfrcllembacc 6319 tfrcllembxssdm 6320 tfrcllembfn 6321 map0g 6650 xpdom3m 6796 phplem4 6817 phpm 6827 findcard2 6851 findcard2s 6852 ac6sfi 6860 fiintim 6890 xpfi 6891 fidcenum 6917 ordiso 6997 ctmlemr 7069 ctm 7070 ctssdc 7074 pm54.43 7142 exmidfodomrlemim 7153 recclnq 7329 ltexnqq 7345 ltbtwnnqq 7352 recexprlemss1l 7572 recexprlemss1u 7573 negm 9549 ioom 10192 seq3f1olemp 10433 fiinfnf1o 10695 fihashf1rn 10698 climcau 11284 summodclem2 11319 zsumdc 11321 isumz 11326 fsumf1o 11327 fisumss 11329 fsumcl2lem 11335 fsumadd 11343 fsummulc2 11385 ntrivcvgap 11485 prodmodclem2 11514 zproddc 11516 prod1dc 11523 fprodf1o 11525 fprodssdc 11527 fprodmul 11528 nnmindc 11963 uzwodc 11966 pceu 12223 ennnfone 12354 enctlem 12361 unct 12371 eltg3 12657 tgtop 12668 tgidm 12674 tgrest 12769 tgcn 12808 xblm 13017 dvfgg 13257 dvcnp2cntop 13263 pwtrufal 13837 |
Copyright terms: Public domain | W3C validator |