| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | Unicode version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 |
|
| Ref | Expression |
|---|---|
| exlimdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. 2
| |
| 2 | ax-17 1549 |
. 2
| |
| 3 | exlimdv.1 |
. 2
| |
| 4 | 1, 2, 3 | exlimdh 1619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1470 ax-gen 1472 ax-ie2 1517 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1843 exlimdvv 1921 exlimddv 1922 tpid3g 3748 sssnm 3795 pwntru 4243 euotd 4299 ralxfr2d 4511 rexxfr2d 4512 releldmb 4915 relelrnb 4916 elres 4995 iss 5005 imain 5356 elunirn 5835 ovmpt4g 6068 oprssdmm 6257 op1steq 6265 fo2ndf 6313 reldmtpos 6339 rntpos 6343 tfrlemibacc 6412 tfrlemibxssdm 6413 tfrlemibfn 6414 tfrexlem 6420 tfr1onlembacc 6428 tfr1onlembxssdm 6429 tfr1onlembfn 6430 tfrcllembacc 6441 tfrcllembxssdm 6442 tfrcllembfn 6443 map0g 6775 xpdom3m 6929 phplem4 6952 phpm 6962 findcard2 6986 findcard2s 6987 ac6sfi 6995 fiintim 7028 xpfi 7029 fidcenum 7058 ordiso 7138 ctmlemr 7210 ctm 7211 ctssdc 7215 pm54.43 7298 exmidfodomrlemim 7309 recclnq 7505 ltexnqq 7521 ltbtwnnqq 7528 recexprlemss1l 7748 recexprlemss1u 7749 negm 9736 ioom 10403 seq3f1olemp 10660 fiinfnf1o 10931 fihashf1rn 10933 climcau 11658 summodclem2 11693 zsumdc 11695 isumz 11700 fsumf1o 11701 fisumss 11703 fsumcl2lem 11709 fsumadd 11717 fsummulc2 11759 ntrivcvgap 11859 prodmodclem2 11888 zproddc 11890 prod1dc 11897 fprodf1o 11899 fprodssdc 11901 fprodmul 11902 nnmindc 12355 uzwodc 12358 pceu 12618 4sqlemafi 12718 4sqlem12 12725 ennnfone 12796 enctlem 12803 unct 12813 gsumfzval 13223 sgrpidmndm 13252 subrngintm 13974 subrgintm 14005 islssm 14119 lss0cl 14131 islidlm 14241 eltg3 14529 tgtop 14540 tgidm 14546 tgrest 14641 tgcn 14680 xblm 14889 dvfgg 15160 dvcnp2cntop 15171 2lgslem1 15568 pwtrufal 15934 |
| Copyright terms: Public domain | W3C validator |