| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | Unicode version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 |
|
| Ref | Expression |
|---|---|
| exlimdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 |
. 2
| |
| 2 | ax-17 1572 |
. 2
| |
| 3 | exlimdv.1 |
. 2
| |
| 4 | 1, 2, 3 | exlimdh 1642 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1493 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1866 exlimdvv 1944 exlimddv 1945 tpid3g 3782 sssnm 3832 pwntru 4283 euotd 4341 ralxfr2d 4555 rexxfr2d 4556 reldmm 4942 releldmb 4961 relelrnb 4962 elres 5041 iss 5051 imain 5403 elunirn 5890 ovmpt4g 6127 oprssdmm 6317 op1steq 6325 fo2ndf 6373 reldmtpos 6399 rntpos 6403 tfrlemibacc 6472 tfrlemibxssdm 6473 tfrlemibfn 6474 tfrexlem 6480 tfr1onlembacc 6488 tfr1onlembxssdm 6489 tfr1onlembfn 6490 tfrcllembacc 6501 tfrcllembxssdm 6502 tfrcllembfn 6503 map0g 6835 dom1o 6977 xpdom3m 6993 phplem4 7016 phpm 7027 findcard2 7051 findcard2s 7052 ac6sfi 7060 fiintim 7093 xpfi 7094 fidcenum 7123 ordiso 7203 ctmlemr 7275 ctm 7276 ctssdc 7280 pm54.43 7363 exmidfodomrlemim 7379 iftrueb01 7408 pw1m 7409 recclnq 7579 ltexnqq 7595 ltbtwnnqq 7602 recexprlemss1l 7822 recexprlemss1u 7823 negm 9810 ioom 10480 seq3f1olemp 10737 fiinfnf1o 11008 fihashf1rn 11010 climcau 11858 summodclem2 11893 zsumdc 11895 isumz 11900 fsumf1o 11901 fisumss 11903 fsumcl2lem 11909 fsumadd 11917 fsummulc2 11959 ntrivcvgap 12059 prodmodclem2 12088 zproddc 12090 prod1dc 12097 fprodf1o 12099 fprodssdc 12101 fprodmul 12102 nnmindc 12555 uzwodc 12558 pceu 12818 4sqlemafi 12918 4sqlem12 12925 ennnfone 12996 enctlem 13003 unct 13013 gsumfzval 13424 sgrpidmndm 13453 subrngintm 14176 subrgintm 14207 islssm 14321 lss0cl 14333 islidlm 14443 eltg3 14731 tgtop 14742 tgidm 14748 tgrest 14843 tgcn 14882 xblm 15091 dvfgg 15362 dvcnp2cntop 15373 2lgslem1 15770 pwtrufal 16363 |
| Copyright terms: Public domain | W3C validator |