| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | Unicode version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 |
|
| Ref | Expression |
|---|---|
| exlimdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 |
. 2
| |
| 2 | ax-17 1540 |
. 2
| |
| 3 | exlimdv.1 |
. 2
| |
| 4 | 1, 2, 3 | exlimdh 1610 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1834 exlimdvv 1912 exlimddv 1913 tpid3g 3738 sssnm 3785 pwntru 4233 euotd 4288 ralxfr2d 4500 rexxfr2d 4501 releldmb 4904 relelrnb 4905 elres 4983 iss 4993 imain 5341 elunirn 5814 ovmpt4g 6047 oprssdmm 6231 op1steq 6239 fo2ndf 6287 reldmtpos 6313 rntpos 6317 tfrlemibacc 6386 tfrlemibxssdm 6387 tfrlemibfn 6388 tfrexlem 6394 tfr1onlembacc 6402 tfr1onlembxssdm 6403 tfr1onlembfn 6404 tfrcllembacc 6415 tfrcllembxssdm 6416 tfrcllembfn 6417 map0g 6749 xpdom3m 6895 phplem4 6918 phpm 6928 findcard2 6952 findcard2s 6953 ac6sfi 6961 fiintim 6994 xpfi 6995 fidcenum 7024 ordiso 7104 ctmlemr 7176 ctm 7177 ctssdc 7181 pm54.43 7260 exmidfodomrlemim 7271 recclnq 7462 ltexnqq 7478 ltbtwnnqq 7485 recexprlemss1l 7705 recexprlemss1u 7706 negm 9692 ioom 10353 seq3f1olemp 10610 fiinfnf1o 10881 fihashf1rn 10883 climcau 11515 summodclem2 11550 zsumdc 11552 isumz 11557 fsumf1o 11558 fisumss 11560 fsumcl2lem 11566 fsumadd 11574 fsummulc2 11616 ntrivcvgap 11716 prodmodclem2 11745 zproddc 11747 prod1dc 11754 fprodf1o 11756 fprodssdc 11758 fprodmul 11759 nnmindc 12212 uzwodc 12215 pceu 12475 4sqlemafi 12575 4sqlem12 12582 ennnfone 12653 enctlem 12660 unct 12670 gsumfzval 13060 sgrpidmndm 13087 subrngintm 13794 subrgintm 13825 islssm 13939 lss0cl 13951 islidlm 14061 eltg3 14319 tgtop 14330 tgidm 14336 tgrest 14431 tgcn 14470 xblm 14679 dvfgg 14950 dvcnp2cntop 14961 2lgslem1 15358 pwtrufal 15670 |
| Copyright terms: Public domain | W3C validator |