| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exists2 | Unicode version | ||
| Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| exists2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbeu1 2055 | 
. . . . . 6
 | |
| 2 | hba1 1554 | 
. . . . . 6
 | |
| 3 | exists1 2141 | 
. . . . . . 7
 | |
| 4 | ax16 1827 | 
. . . . . . 7
 | |
| 5 | 3, 4 | sylbi 121 | 
. . . . . 6
 | 
| 6 | 1, 2, 5 | exlimdh 1610 | 
. . . . 5
 | 
| 7 | 6 | com12 30 | 
. . . 4
 | 
| 8 | alexim 1659 | 
. . . 4
 | |
| 9 | 7, 8 | syl6 33 | 
. . 3
 | 
| 10 | 9 | con2d 625 | 
. 2
 | 
| 11 | 10 | imp 124 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |