Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exists2 | Unicode version |
Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
exists2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbeu1 2024 | . . . . . 6 | |
2 | hba1 1528 | . . . . . 6 | |
3 | exists1 2110 | . . . . . . 7 | |
4 | ax16 1801 | . . . . . . 7 | |
5 | 3, 4 | sylbi 120 | . . . . . 6 |
6 | 1, 2, 5 | exlimdh 1584 | . . . . 5 |
7 | 6 | com12 30 | . . . 4 |
8 | alexim 1633 | . . . 4 | |
9 | 7, 8 | syl6 33 | . . 3 |
10 | 9 | con2d 614 | . 2 |
11 | 10 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1341 wceq 1343 wex 1480 weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |