ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5 Unicode version

Theorem equs5 1806
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equs5  |-  ( -. 
A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) )

Proof of Theorem equs5
StepHypRef Expression
1 hbnae 1698 . 2  |-  ( -. 
A. x  x  =  y  ->  A. x  -.  A. x  x  =  y )
2 hba1 1517 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x A. x ( x  =  y  ->  ph ) )
3 ax11o 1799 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
43impd 252 . 2  |-  ( -. 
A. x  x  =  y  ->  ( (
x  =  y  /\  ph )  ->  A. x
( x  =  y  ->  ph ) ) )
51, 2, 4exlimdh 1573 1  |-  ( -. 
A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1330   E.wex 1469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740
This theorem is referenced by:  sb3  1808  sb4  1809
  Copyright terms: Public domain W3C validator