| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvexdh | Unicode version | ||
| Description: Deduction used to change bound variables, using implicit substitition, particularly useful in conjunction with dvelim 2036. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 30-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| cbvexdh.1 | 
 | 
| cbvexdh.2 | 
 | 
| cbvexdh.3 | 
 | 
| Ref | Expression | 
|---|---|
| cbvexdh | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-17 1540 | 
. . 3
 | |
| 2 | ax-17 1540 | 
. . . 4
 | |
| 3 | 2 | hbex 1650 | 
. . 3
 | 
| 4 | cbvexdh.1 | 
. . . . 5
 | |
| 5 | cbvexdh.2 | 
. . . . 5
 | |
| 6 | cbvexdh.3 | 
. . . . . 6
 | |
| 7 | equcomi 1718 | 
. . . . . . 7
 | |
| 8 | bicom1 131 | 
. . . . . . 7
 | |
| 9 | 7, 8 | imim12i 59 | 
. . . . . 6
 | 
| 10 | 6, 9 | syl 14 | 
. . . . 5
 | 
| 11 | 4, 5, 10 | equsexd 1743 | 
. . . 4
 | 
| 12 | simpr 110 | 
. . . . 5
 | |
| 13 | 12 | eximi 1614 | 
. . . 4
 | 
| 14 | 11, 13 | biimtrrdi 164 | 
. . 3
 | 
| 15 | 1, 3, 14 | exlimdh 1610 | 
. 2
 | 
| 16 | 1, 5 | eximdh 1625 | 
. . . 4
 | 
| 17 | 19.12 1679 | 
. . . 4
 | |
| 18 | 16, 17 | syl6 33 | 
. . 3
 | 
| 19 | 2 | a1i 9 | 
. . . . 5
 | 
| 20 | 1, 19, 6 | equsexd 1743 | 
. . . 4
 | 
| 21 | simpr 110 | 
. . . . 5
 | |
| 22 | 21 | eximi 1614 | 
. . . 4
 | 
| 23 | 20, 22 | biimtrrdi 164 | 
. . 3
 | 
| 24 | 4, 18, 23 | exlimd2 1609 | 
. 2
 | 
| 25 | 15, 24 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: cbvexd 1942 | 
| Copyright terms: Public domain | W3C validator |