![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dtru | Unicode version |
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4559. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dtru |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtruex 4559 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exnalim 1646 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-v 2740 df-dif 3132 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 |
This theorem is referenced by: oprabidlem 5906 |
Copyright terms: Public domain | W3C validator |