ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtru Unicode version

Theorem dtru 4560
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4559. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dtru  |-  -.  A. x  x  =  y
Distinct variable group:    x, y

Proof of Theorem dtru
StepHypRef Expression
1 dtruex 4559 . 2  |-  E. x  -.  x  =  y
2 exnalim 1646 . 2  |-  ( E. x  -.  x  =  y  ->  -.  A. x  x  =  y )
31, 2ax-mp 5 1  |-  -.  A. x  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1351   E.wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599
This theorem is referenced by:  oprabidlem  5906
  Copyright terms: Public domain W3C validator