| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtru | Unicode version | ||
| Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4628. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| dtru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruex 4628 |
. 2
| |
| 2 | exnalim 1672 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-v 2781 df-dif 3179 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 |
| This theorem is referenced by: oprabidlem 6005 |
| Copyright terms: Public domain | W3C validator |