ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtru Unicode version

Theorem dtru 4652
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4651. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dtru  |-  -.  A. x  x  =  y
Distinct variable group:    x, y

Proof of Theorem dtru
StepHypRef Expression
1 dtruex 4651 . 2  |-  E. x  -.  x  =  y
2 exnalim 1692 . 2  |-  ( E. x  -.  x  =  y  ->  -.  A. x  x  =  y )
31, 2ax-mp 5 1  |-  -.  A. x  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1393   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672
This theorem is referenced by:  oprabidlem  6038
  Copyright terms: Public domain W3C validator