| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exnalim | GIF version | ||
| Description: One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| exnalim | ⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alexim 1659 | . 2 ⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2i 628 | 1 ⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 | 
| This theorem is referenced by: exanaliim 1661 alexnim 1662 nnal 1663 dtru 4596 brprcneu 5551 | 
| Copyright terms: Public domain | W3C validator |