| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exnalim | GIF version | ||
| Description: One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| exnalim | ⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexim 1669 | . 2 ⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2i 628 | 1 ⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 |
| This theorem is referenced by: exanaliim 1671 alexnim 1672 nnal 1673 dtru 4626 brprcneu 5592 |
| Copyright terms: Public domain | W3C validator |