ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exrot4 Unicode version

Theorem exrot4 1714
Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exrot4  |-  ( E. x E. y E. z E. w ph  <->  E. z E. w E. x E. y ph )

Proof of Theorem exrot4
StepHypRef Expression
1 excom13 1712 . . 3  |-  ( E. y E. z E. w ph  <->  E. w E. z E. y ph )
21exbii 1628 . 2  |-  ( E. x E. y E. z E. w ph  <->  E. x E. w E. z E. y ph )
3 excom13 1712 . 2  |-  ( E. x E. w E. z E. y ph  <->  E. z E. w E. x E. y ph )
42, 3bitri 184 1  |-  ( E. x E. y E. z E. w ph  <->  E. z E. w E. x E. y ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ee8anv  1963  elvvv  4738  dfoprab2  5992  xpassen  6925  enq0sym  7545
  Copyright terms: Public domain W3C validator