ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exrot3 Unicode version

Theorem exrot3 1625
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exrot3  |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )

Proof of Theorem exrot3
StepHypRef Expression
1 excom13 1624 . 2  |-  ( E. x E. y E. z ph  <->  E. z E. y E. x ph )
2 excom 1599 . 2  |-  ( E. z E. y E. x ph  <->  E. y E. z E. x ph )
31, 2bitri 182 1  |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   E.wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-ial 1472
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  opabm  4107  rexiunxp  4578  dmoprab  5729  rnoprab  5731  cnvoprab  5999  xpassen  6544  dmaddpq  6936  dmmulpq  6937
  Copyright terms: Public domain W3C validator