ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exrot3 Unicode version

Theorem exrot3 1704
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exrot3  |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )

Proof of Theorem exrot3
StepHypRef Expression
1 excom13 1703 . 2  |-  ( E. x E. y E. z ph  <->  E. z E. y E. x ph )
2 excom 1678 . 2  |-  ( E. z E. y E. x ph  <->  E. y E. z E. x ph )
31, 2bitri 184 1  |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  opabm  4315  rexiunxp  4808  dmoprab  6003  rnoprab  6005  cnvoprab  6292  xpassen  6889  dmaddpq  7446  dmmulpq  7447
  Copyright terms: Public domain W3C validator