ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab2 Unicode version

Theorem dfoprab2 5900
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
dfoprab2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
Distinct variable groups:    x, z, w   
y, z, w    ph, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dfoprab2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 excom 1657 . . . 4  |-  ( E. z E. w E. x E. y ( v  =  <. w ,  z
>.  /\  ( w  = 
<. x ,  y >.  /\  ph ) )  <->  E. w E. z E. x E. y ( v  = 
<. w ,  z >.  /\  ( w  =  <. x ,  y >.  /\  ph ) ) )
2 exrot4 1684 . . . . 5  |-  ( E. z E. w E. x E. y ( v  =  <. w ,  z
>.  /\  ( w  = 
<. x ,  y >.  /\  ph ) )  <->  E. x E. y E. z E. w ( v  = 
<. w ,  z >.  /\  ( w  =  <. x ,  y >.  /\  ph ) ) )
3 opeq1 3765 . . . . . . . . . . . 12  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  z
>.  =  <. <. x ,  y >. ,  z
>. )
43eqeq2d 2182 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( v  = 
<. w ,  z >.  <->  v  =  <. <. x ,  y
>. ,  z >. ) )
54pm5.32ri 452 . . . . . . . . . 10  |-  ( ( v  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  <->  ( v  = 
<. <. x ,  y
>. ,  z >.  /\  w  =  <. x ,  y >. )
)
65anbi1i 455 . . . . . . . . 9  |-  ( ( ( v  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  /\  ph )  <->  ( ( v  =  <. <.
x ,  y >. ,  z >.  /\  w  =  <. x ,  y
>. )  /\  ph )
)
7 anass 399 . . . . . . . . 9  |-  ( ( ( v  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  /\  ph )  <->  ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) ) )
8 an32 557 . . . . . . . . 9  |-  ( ( ( v  =  <. <.
x ,  y >. ,  z >.  /\  w  =  <. x ,  y
>. )  /\  ph )  <->  ( ( v  =  <. <.
x ,  y >. ,  z >.  /\  ph )  /\  w  =  <. x ,  y >. )
)
96, 7, 83bitr3i 209 . . . . . . . 8  |-  ( ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) )  <->  ( (
v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  /\  w  =  <. x ,  y >. ) )
109exbii 1598 . . . . . . 7  |-  ( E. w ( v  = 
<. w ,  z >.  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  E. w
( ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  /\  w  =  <. x ,  y
>. ) )
11 vex 2733 . . . . . . . . . 10  |-  x  e. 
_V
12 vex 2733 . . . . . . . . . 10  |-  y  e. 
_V
1311, 12opex 4214 . . . . . . . . 9  |-  <. x ,  y >.  e.  _V
1413isseti 2738 . . . . . . . 8  |-  E. w  w  =  <. x ,  y >.
15 19.42v 1899 . . . . . . . 8  |-  ( E. w ( ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  /\  w  =  <. x ,  y
>. )  <->  ( ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  /\  E. w  w  =  <. x ,  y >. )
)
1614, 15mpbiran2 936 . . . . . . 7  |-  ( E. w ( ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  /\  w  =  <. x ,  y
>. )  <->  ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
1710, 16bitri 183 . . . . . 6  |-  ( E. w ( v  = 
<. w ,  z >.  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) )
18173exbii 1600 . . . . 5  |-  ( E. x E. y E. z E. w ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) )  <->  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph ) )
192, 18bitri 183 . . . 4  |-  ( E. z E. w E. x E. y ( v  =  <. w ,  z
>.  /\  ( w  = 
<. x ,  y >.  /\  ph ) )  <->  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph ) )
20 19.42vv 1904 . . . . 5  |-  ( E. x E. y ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) )  <->  ( v  =  <. w ,  z
>.  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) ) )
21202exbii 1599 . . . 4  |-  ( E. w E. z E. x E. y ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) )  <->  E. w E. z ( v  = 
<. w ,  z >.  /\  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) ) )
221, 19, 213bitr3i 209 . . 3  |-  ( E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. w E. z ( v  = 
<. w ,  z >.  /\  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) ) )
2322abbii 2286 . 2  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  =  { v  |  E. w E. z ( v  =  <. w ,  z
>.  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) ) }
24 df-oprab 5857 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { v  |  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
25 df-opab 4051 . 2  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { v  |  E. w E. z
( v  =  <. w ,  z >.  /\  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) ) }
2623, 24, 253eqtr4i 2201 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485   {cab 2156   <.cop 3586   {copab 4049   {coprab 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-oprab 5857
This theorem is referenced by:  reloprab  5901  cbvoprab1  5925  cbvoprab12  5927  cbvoprab3  5929  dmoprab  5934  rnoprab  5936  ssoprab2i  5942  mpomptx  5944  resoprab  5949  funoprabg  5952  ov6g  5990  dfoprab3s  6169  xpcomco  6804
  Copyright terms: Public domain W3C validator