| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfoprab2 | Unicode version | ||
| Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| dfoprab2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | excom 1678 | 
. . . 4
 | |
| 2 | exrot4 1705 | 
. . . . 5
 | |
| 3 | opeq1 3808 | 
. . . . . . . . . . . 12
 | |
| 4 | 3 | eqeq2d 2208 | 
. . . . . . . . . . 11
 | 
| 5 | 4 | pm5.32ri 455 | 
. . . . . . . . . 10
 | 
| 6 | 5 | anbi1i 458 | 
. . . . . . . . 9
 | 
| 7 | anass 401 | 
. . . . . . . . 9
 | |
| 8 | an32 562 | 
. . . . . . . . 9
 | |
| 9 | 6, 7, 8 | 3bitr3i 210 | 
. . . . . . . 8
 | 
| 10 | 9 | exbii 1619 | 
. . . . . . 7
 | 
| 11 | vex 2766 | 
. . . . . . . . . 10
 | |
| 12 | vex 2766 | 
. . . . . . . . . 10
 | |
| 13 | 11, 12 | opex 4262 | 
. . . . . . . . 9
 | 
| 14 | 13 | isseti 2771 | 
. . . . . . . 8
 | 
| 15 | 19.42v 1921 | 
. . . . . . . 8
 | |
| 16 | 14, 15 | mpbiran2 943 | 
. . . . . . 7
 | 
| 17 | 10, 16 | bitri 184 | 
. . . . . 6
 | 
| 18 | 17 | 3exbii 1621 | 
. . . . 5
 | 
| 19 | 2, 18 | bitri 184 | 
. . . 4
 | 
| 20 | 19.42vv 1926 | 
. . . . 5
 | |
| 21 | 20 | 2exbii 1620 | 
. . . 4
 | 
| 22 | 1, 19, 21 | 3bitr3i 210 | 
. . 3
 | 
| 23 | 22 | abbii 2312 | 
. 2
 | 
| 24 | df-oprab 5926 | 
. 2
 | |
| 25 | df-opab 4095 | 
. 2
 | |
| 26 | 23, 24, 25 | 3eqtr4i 2227 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-oprab 5926 | 
| This theorem is referenced by: reloprab 5970 cbvoprab1 5994 cbvoprab12 5996 cbvoprab3 5998 dmoprab 6003 rnoprab 6005 ssoprab2i 6011 mpomptx 6013 resoprab 6018 funoprabg 6021 ov6g 6061 dfoprab3s 6248 xpcomco 6885 | 
| Copyright terms: Public domain | W3C validator |