Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfoprab2 | Unicode version |
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
dfoprab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1652 | . . . 4 | |
2 | exrot4 1679 | . . . . 5 | |
3 | opeq1 3758 | . . . . . . . . . . . 12 | |
4 | 3 | eqeq2d 2177 | . . . . . . . . . . 11 |
5 | 4 | pm5.32ri 451 | . . . . . . . . . 10 |
6 | 5 | anbi1i 454 | . . . . . . . . 9 |
7 | anass 399 | . . . . . . . . 9 | |
8 | an32 552 | . . . . . . . . 9 | |
9 | 6, 7, 8 | 3bitr3i 209 | . . . . . . . 8 |
10 | 9 | exbii 1593 | . . . . . . 7 |
11 | vex 2729 | . . . . . . . . . 10 | |
12 | vex 2729 | . . . . . . . . . 10 | |
13 | 11, 12 | opex 4207 | . . . . . . . . 9 |
14 | 13 | isseti 2734 | . . . . . . . 8 |
15 | 19.42v 1894 | . . . . . . . 8 | |
16 | 14, 15 | mpbiran2 931 | . . . . . . 7 |
17 | 10, 16 | bitri 183 | . . . . . 6 |
18 | 17 | 3exbii 1595 | . . . . 5 |
19 | 2, 18 | bitri 183 | . . . 4 |
20 | 19.42vv 1899 | . . . . 5 | |
21 | 20 | 2exbii 1594 | . . . 4 |
22 | 1, 19, 21 | 3bitr3i 209 | . . 3 |
23 | 22 | abbii 2282 | . 2 |
24 | df-oprab 5846 | . 2 | |
25 | df-opab 4044 | . 2 | |
26 | 23, 24, 25 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 cab 2151 cop 3579 copab 4042 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-oprab 5846 |
This theorem is referenced by: reloprab 5890 cbvoprab1 5914 cbvoprab12 5916 cbvoprab3 5918 dmoprab 5923 rnoprab 5925 ssoprab2i 5931 mpomptx 5933 resoprab 5938 funoprabg 5941 ov6g 5979 dfoprab3s 6158 xpcomco 6792 |
Copyright terms: Public domain | W3C validator |