| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfoprab2 | Unicode version | ||
| Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| dfoprab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 1678 |
. . . 4
| |
| 2 | exrot4 1705 |
. . . . 5
| |
| 3 | opeq1 3809 |
. . . . . . . . . . . 12
| |
| 4 | 3 | eqeq2d 2208 |
. . . . . . . . . . 11
|
| 5 | 4 | pm5.32ri 455 |
. . . . . . . . . 10
|
| 6 | 5 | anbi1i 458 |
. . . . . . . . 9
|
| 7 | anass 401 |
. . . . . . . . 9
| |
| 8 | an32 562 |
. . . . . . . . 9
| |
| 9 | 6, 7, 8 | 3bitr3i 210 |
. . . . . . . 8
|
| 10 | 9 | exbii 1619 |
. . . . . . 7
|
| 11 | vex 2766 |
. . . . . . . . . 10
| |
| 12 | vex 2766 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | opex 4263 |
. . . . . . . . 9
|
| 14 | 13 | isseti 2771 |
. . . . . . . 8
|
| 15 | 19.42v 1921 |
. . . . . . . 8
| |
| 16 | 14, 15 | mpbiran2 943 |
. . . . . . 7
|
| 17 | 10, 16 | bitri 184 |
. . . . . 6
|
| 18 | 17 | 3exbii 1621 |
. . . . 5
|
| 19 | 2, 18 | bitri 184 |
. . . 4
|
| 20 | 19.42vv 1926 |
. . . . 5
| |
| 21 | 20 | 2exbii 1620 |
. . . 4
|
| 22 | 1, 19, 21 | 3bitr3i 210 |
. . 3
|
| 23 | 22 | abbii 2312 |
. 2
|
| 24 | df-oprab 5929 |
. 2
| |
| 25 | df-opab 4096 |
. 2
| |
| 26 | 23, 24, 25 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-oprab 5929 |
| This theorem is referenced by: reloprab 5974 cbvoprab1 5998 cbvoprab12 6000 cbvoprab3 6002 dmoprab 6007 rnoprab 6009 ssoprab2i 6015 mpomptx 6017 resoprab 6022 funoprabg 6025 ov6g 6065 dfoprab3s 6257 xpcomco 6894 |
| Copyright terms: Public domain | W3C validator |