Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfoprab2 | Unicode version |
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
dfoprab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1657 | . . . 4 | |
2 | exrot4 1684 | . . . . 5 | |
3 | opeq1 3765 | . . . . . . . . . . . 12 | |
4 | 3 | eqeq2d 2182 | . . . . . . . . . . 11 |
5 | 4 | pm5.32ri 452 | . . . . . . . . . 10 |
6 | 5 | anbi1i 455 | . . . . . . . . 9 |
7 | anass 399 | . . . . . . . . 9 | |
8 | an32 557 | . . . . . . . . 9 | |
9 | 6, 7, 8 | 3bitr3i 209 | . . . . . . . 8 |
10 | 9 | exbii 1598 | . . . . . . 7 |
11 | vex 2733 | . . . . . . . . . 10 | |
12 | vex 2733 | . . . . . . . . . 10 | |
13 | 11, 12 | opex 4214 | . . . . . . . . 9 |
14 | 13 | isseti 2738 | . . . . . . . 8 |
15 | 19.42v 1899 | . . . . . . . 8 | |
16 | 14, 15 | mpbiran2 936 | . . . . . . 7 |
17 | 10, 16 | bitri 183 | . . . . . 6 |
18 | 17 | 3exbii 1600 | . . . . 5 |
19 | 2, 18 | bitri 183 | . . . 4 |
20 | 19.42vv 1904 | . . . . 5 | |
21 | 20 | 2exbii 1599 | . . . 4 |
22 | 1, 19, 21 | 3bitr3i 209 | . . 3 |
23 | 22 | abbii 2286 | . 2 |
24 | df-oprab 5857 | . 2 | |
25 | df-opab 4051 | . 2 | |
26 | 23, 24, 25 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wex 1485 cab 2156 cop 3586 copab 4049 coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-oprab 5857 |
This theorem is referenced by: reloprab 5901 cbvoprab1 5925 cbvoprab12 5927 cbvoprab3 5929 dmoprab 5934 rnoprab 5936 ssoprab2i 5942 mpomptx 5944 resoprab 5949 funoprabg 5952 ov6g 5990 dfoprab3s 6169 xpcomco 6804 |
Copyright terms: Public domain | W3C validator |