| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0sym | Unicode version | ||
| Description: The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7502. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0sym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . . . . 8
| |
| 2 | vex 2766 |
. . . . . . . 8
| |
| 3 | eleq1 2259 |
. . . . . . . . . 10
| |
| 4 | 3 | anbi1d 465 |
. . . . . . . . 9
|
| 5 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 6 | 5 | anbi1d 465 |
. . . . . . . . . . 11
|
| 7 | 6 | anbi1d 465 |
. . . . . . . . . 10
|
| 8 | 7 | 4exbidv 1884 |
. . . . . . . . 9
|
| 9 | 4, 8 | anbi12d 473 |
. . . . . . . 8
|
| 10 | eleq1 2259 |
. . . . . . . . . 10
| |
| 11 | 10 | anbi2d 464 |
. . . . . . . . 9
|
| 12 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi2d 464 |
. . . . . . . . . . 11
|
| 14 | 13 | anbi1d 465 |
. . . . . . . . . 10
|
| 15 | 14 | 4exbidv 1884 |
. . . . . . . . 9
|
| 16 | 11, 15 | anbi12d 473 |
. . . . . . . 8
|
| 17 | df-enq0 7491 |
. . . . . . . 8
| |
| 18 | 1, 2, 9, 16, 17 | brab 4307 |
. . . . . . 7
|
| 19 | 18 | biimpi 120 |
. . . . . 6
|
| 20 | opeq12 3810 |
. . . . . . . . . . 11
| |
| 21 | 20 | eqeq2d 2208 |
. . . . . . . . . 10
|
| 22 | 21 | anbi1d 465 |
. . . . . . . . 9
|
| 23 | simpl 109 |
. . . . . . . . . . 11
| |
| 24 | 23 | oveq1d 5937 |
. . . . . . . . . 10
|
| 25 | simpr 110 |
. . . . . . . . . . 11
| |
| 26 | 25 | oveq1d 5937 |
. . . . . . . . . 10
|
| 27 | 24, 26 | eqeq12d 2211 |
. . . . . . . . 9
|
| 28 | 22, 27 | anbi12d 473 |
. . . . . . . 8
|
| 29 | opeq12 3810 |
. . . . . . . . . . 11
| |
| 30 | 29 | eqeq2d 2208 |
. . . . . . . . . 10
|
| 31 | 30 | anbi2d 464 |
. . . . . . . . 9
|
| 32 | simpr 110 |
. . . . . . . . . . 11
| |
| 33 | 32 | oveq2d 5938 |
. . . . . . . . . 10
|
| 34 | simpl 109 |
. . . . . . . . . . 11
| |
| 35 | 34 | oveq2d 5938 |
. . . . . . . . . 10
|
| 36 | 33, 35 | eqeq12d 2211 |
. . . . . . . . 9
|
| 37 | 31, 36 | anbi12d 473 |
. . . . . . . 8
|
| 38 | 28, 37 | cbvex4v 1949 |
. . . . . . 7
|
| 39 | 38 | anbi2i 457 |
. . . . . 6
|
| 40 | 19, 39 | sylib 122 |
. . . . 5
|
| 41 | 19.42vv 1926 |
. . . . 5
| |
| 42 | 40, 41 | sylibr 134 |
. . . 4
|
| 43 | 19.42vv 1926 |
. . . . 5
| |
| 44 | 43 | 2exbii 1620 |
. . . 4
|
| 45 | 42, 44 | sylibr 134 |
. . 3
|
| 46 | pm3.22 265 |
. . . . . . 7
| |
| 47 | 46 | adantr 276 |
. . . . . 6
|
| 48 | pm3.22 265 |
. . . . . . 7
| |
| 49 | 48 | ad2antrl 490 |
. . . . . 6
|
| 50 | simprr 531 |
. . . . . . . 8
| |
| 51 | eleq1 2259 |
. . . . . . . . . . . . . 14
| |
| 52 | opelxp 4693 |
. . . . . . . . . . . . . 14
| |
| 53 | 51, 52 | bitrdi 196 |
. . . . . . . . . . . . 13
|
| 54 | 53 | biimpcd 159 |
. . . . . . . . . . . 12
|
| 55 | eleq1 2259 |
. . . . . . . . . . . . . 14
| |
| 56 | opelxp 4693 |
. . . . . . . . . . . . . 14
| |
| 57 | 55, 56 | bitrdi 196 |
. . . . . . . . . . . . 13
|
| 58 | 57 | biimpcd 159 |
. . . . . . . . . . . 12
|
| 59 | 54, 58 | im2anan9 598 |
. . . . . . . . . . 11
|
| 60 | 59 | imp 124 |
. . . . . . . . . 10
|
| 61 | 60 | adantrr 479 |
. . . . . . . . 9
|
| 62 | pinn 7376 |
. . . . . . . . . . . 12
| |
| 63 | nnmcom 6547 |
. . . . . . . . . . . 12
| |
| 64 | 62, 63 | sylan2 286 |
. . . . . . . . . . 11
|
| 65 | pinn 7376 |
. . . . . . . . . . . 12
| |
| 66 | nnmcom 6547 |
. . . . . . . . . . . 12
| |
| 67 | 65, 66 | sylan 283 |
. . . . . . . . . . 11
|
| 68 | 64, 67 | eqeqan12d 2212 |
. . . . . . . . . 10
|
| 69 | 68 | an42s 589 |
. . . . . . . . 9
|
| 70 | 61, 69 | syl 14 |
. . . . . . . 8
|
| 71 | 50, 70 | mpbid 147 |
. . . . . . 7
|
| 72 | 71 | eqcomd 2202 |
. . . . . 6
|
| 73 | 47, 49, 72 | jca32 310 |
. . . . 5
|
| 74 | 73 | 2eximi 1615 |
. . . 4
|
| 75 | 74 | 2eximi 1615 |
. . 3
|
| 76 | 45, 75 | syl 14 |
. 2
|
| 77 | exrot4 1705 |
. . 3
| |
| 78 | 19.42vv 1926 |
. . . . 5
| |
| 79 | 78 | 2exbii 1620 |
. . . 4
|
| 80 | 19.42vv 1926 |
. . . . 5
| |
| 81 | opeq12 3810 |
. . . . . . . . . 10
| |
| 82 | 81 | eqeq2d 2208 |
. . . . . . . . 9
|
| 83 | 82 | anbi1d 465 |
. . . . . . . 8
|
| 84 | simpl 109 |
. . . . . . . . . 10
| |
| 85 | 84 | oveq1d 5937 |
. . . . . . . . 9
|
| 86 | simpr 110 |
. . . . . . . . . 10
| |
| 87 | 86 | oveq1d 5937 |
. . . . . . . . 9
|
| 88 | 85, 87 | eqeq12d 2211 |
. . . . . . . 8
|
| 89 | 83, 88 | anbi12d 473 |
. . . . . . 7
|
| 90 | opeq12 3810 |
. . . . . . . . . 10
| |
| 91 | 90 | eqeq2d 2208 |
. . . . . . . . 9
|
| 92 | 91 | anbi2d 464 |
. . . . . . . 8
|
| 93 | simpr 110 |
. . . . . . . . . 10
| |
| 94 | 93 | oveq2d 5938 |
. . . . . . . . 9
|
| 95 | simpl 109 |
. . . . . . . . . 10
| |
| 96 | 95 | oveq2d 5938 |
. . . . . . . . 9
|
| 97 | 94, 96 | eqeq12d 2211 |
. . . . . . . 8
|
| 98 | 92, 97 | anbi12d 473 |
. . . . . . 7
|
| 99 | 89, 98 | cbvex4v 1949 |
. . . . . 6
|
| 100 | eleq1 2259 |
. . . . . . . . . 10
| |
| 101 | 100 | anbi1d 465 |
. . . . . . . . 9
|
| 102 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 103 | 102 | anbi1d 465 |
. . . . . . . . . . 11
|
| 104 | 103 | anbi1d 465 |
. . . . . . . . . 10
|
| 105 | 104 | 4exbidv 1884 |
. . . . . . . . 9
|
| 106 | 101, 105 | anbi12d 473 |
. . . . . . . 8
|
| 107 | eleq1 2259 |
. . . . . . . . . 10
| |
| 108 | 107 | anbi2d 464 |
. . . . . . . . 9
|
| 109 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 110 | 109 | anbi2d 464 |
. . . . . . . . . . 11
|
| 111 | 110 | anbi1d 465 |
. . . . . . . . . 10
|
| 112 | 111 | 4exbidv 1884 |
. . . . . . . . 9
|
| 113 | 108, 112 | anbi12d 473 |
. . . . . . . 8
|
| 114 | 2, 1, 106, 113, 17 | brab 4307 |
. . . . . . 7
|
| 115 | 114 | biimpri 133 |
. . . . . 6
|
| 116 | 99, 115 | sylan2br 288 |
. . . . 5
|
| 117 | 80, 116 | sylbi 121 |
. . . 4
|
| 118 | 79, 117 | sylbi 121 |
. . 3
|
| 119 | 77, 118 | sylbi 121 |
. 2
|
| 120 | 76, 119 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-ni 7371 df-enq0 7491 |
| This theorem is referenced by: enq0er 7502 |
| Copyright terms: Public domain | W3C validator |