ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0sym Unicode version

Theorem enq0sym 7394
Description: The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7397. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0sym  |-  ( f ~Q0  g  ->  g ~Q0  f )

Proof of Theorem enq0sym
Dummy variables  a  b  c  d  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . . . . 8  |-  f  e. 
_V
2 vex 2733 . . . . . . . 8  |-  g  e. 
_V
3 eleq1 2233 . . . . . . . . . 10  |-  ( x  =  f  ->  (
x  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
43anbi1d 462 . . . . . . . . 9  |-  ( x  =  f  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
5 eqeq1 2177 . . . . . . . . . . . 12  |-  ( x  =  f  ->  (
x  =  <. z ,  w >.  <->  f  =  <. z ,  w >. )
)
65anbi1d 462 . . . . . . . . . . 11  |-  ( x  =  f  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
76anbi1d 462 . . . . . . . . . 10  |-  ( x  =  f  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
874exbidv 1863 . . . . . . . . 9  |-  ( x  =  f  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
94, 8anbi12d 470 . . . . . . . 8  |-  ( x  =  f  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
10 eleq1 2233 . . . . . . . . . 10  |-  ( y  =  g  ->  (
y  e.  ( om 
X.  N. )  <->  g  e.  ( om  X.  N. )
) )
1110anbi2d 461 . . . . . . . . 9  |-  ( y  =  g  ->  (
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) ) ) )
12 eqeq1 2177 . . . . . . . . . . . 12  |-  ( y  =  g  ->  (
y  =  <. v ,  u >.  <->  g  =  <. v ,  u >. )
)
1312anbi2d 461 . . . . . . . . . . 11  |-  ( y  =  g  ->  (
( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  g  =  <. v ,  u >. ) ) )
1413anbi1d 462 . . . . . . . . . 10  |-  ( y  =  g  ->  (
( ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
15144exbidv 1863 . . . . . . . . 9  |-  ( y  =  g  ->  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
1611, 15anbi12d 470 . . . . . . . 8  |-  ( y  =  g  ->  (
( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
17 df-enq0 7386 . . . . . . . 8  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
181, 2, 9, 16, 17brab 4257 . . . . . . 7  |-  ( f ~Q0  g  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
1918biimpi 119 . . . . . 6  |-  ( f ~Q0  g  ->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
20 opeq12 3767 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  -> 
<. z ,  w >.  = 
<. a ,  b >.
)
2120eqeq2d 2182 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( f  =  <. z ,  w >.  <->  f  =  <. a ,  b >.
) )
2221anbi1d 462 . . . . . . . . 9  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( f  = 
<. z ,  w >.  /\  g  =  <. v ,  u >. )  <->  ( f  =  <. a ,  b
>.  /\  g  =  <. v ,  u >. )
) )
23 simpl 108 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  ->  z  =  a )
2423oveq1d 5868 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( z  .o  u
)  =  ( a  .o  u ) )
25 simpr 109 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  ->  w  =  b )
2625oveq1d 5868 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( w  .o  v
)  =  ( b  .o  v ) )
2724, 26eqeq12d 2185 . . . . . . . . 9  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( z  .o  u )  =  ( w  .o  v )  <-> 
( a  .o  u
)  =  ( b  .o  v ) ) )
2822, 27anbi12d 470 . . . . . . . 8  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( f  = 
<. a ,  b >.  /\  g  =  <. v ,  u >. )  /\  ( a  .o  u
)  =  ( b  .o  v ) ) ) )
29 opeq12 3767 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  -> 
<. v ,  u >.  = 
<. c ,  d >.
)
3029eqeq2d 2182 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( g  =  <. v ,  u >.  <->  g  =  <. c ,  d >.
) )
3130anbi2d 461 . . . . . . . . 9  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( f  = 
<. a ,  b >.  /\  g  =  <. v ,  u >. )  <->  ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. ) ) )
32 simpr 109 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  ->  u  =  d )
3332oveq2d 5869 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( a  .o  u
)  =  ( a  .o  d ) )
34 simpl 108 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  ->  v  =  c )
3534oveq2d 5869 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( b  .o  v
)  =  ( b  .o  c ) )
3633, 35eqeq12d 2185 . . . . . . . . 9  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( a  .o  u )  =  ( b  .o  v )  <-> 
( a  .o  d
)  =  ( b  .o  c ) ) )
3731, 36anbi12d 470 . . . . . . . 8  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( ( f  =  <. a ,  b
>.  /\  g  =  <. v ,  u >. )  /\  ( a  .o  u
)  =  ( b  .o  v ) )  <-> 
( ( f  = 
<. a ,  b >.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
3828, 37cbvex4v 1923 . . . . . . 7  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )
3938anbi2i 454 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4019, 39sylib 121 . . . . 5  |-  ( f ~Q0  g  ->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
41 19.42vv 1904 . . . . 5  |-  ( E. a E. b ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4240, 41sylibr 133 . . . 4  |-  ( f ~Q0  g  ->  E. a E. b
( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
43 19.42vv 1904 . . . . 5  |-  ( E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. c E. d ( ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  /\  (
a  .o  d )  =  ( b  .o  c ) ) ) )
44432exbii 1599 . . . 4  |-  ( E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  E. a E. b
( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4542, 44sylibr 133 . . 3  |-  ( f ~Q0  g  ->  E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
46 pm3.22 263 . . . . . . 7  |-  ( ( f  e.  ( om 
X.  N. )  /\  g  e.  ( om  X.  N. ) )  ->  (
g  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) ) )
4746adantr 274 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. )
) )
48 pm3.22 263 . . . . . . 7  |-  ( ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  ->  ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )
)
4948ad2antrl 487 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )
)
50 simprr 527 . . . . . . . 8  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( a  .o  d )  =  ( b  .o  c ) )
51 eleq1 2233 . . . . . . . . . . . . . 14  |-  ( f  =  <. a ,  b
>.  ->  ( f  e.  ( om  X.  N. ) 
<-> 
<. a ,  b >.  e.  ( om  X.  N. ) ) )
52 opelxp 4641 . . . . . . . . . . . . . 14  |-  ( <.
a ,  b >.  e.  ( om  X.  N. ) 
<->  ( a  e.  om  /\  b  e.  N. )
)
5351, 52bitrdi 195 . . . . . . . . . . . . 13  |-  ( f  =  <. a ,  b
>.  ->  ( f  e.  ( om  X.  N. ) 
<->  ( a  e.  om  /\  b  e.  N. )
) )
5453biimpcd 158 . . . . . . . . . . . 12  |-  ( f  e.  ( om  X.  N. )  ->  ( f  =  <. a ,  b
>.  ->  ( a  e. 
om  /\  b  e.  N. ) ) )
55 eleq1 2233 . . . . . . . . . . . . . 14  |-  ( g  =  <. c ,  d
>.  ->  ( g  e.  ( om  X.  N. ) 
<-> 
<. c ,  d >.  e.  ( om  X.  N. ) ) )
56 opelxp 4641 . . . . . . . . . . . . . 14  |-  ( <.
c ,  d >.  e.  ( om  X.  N. ) 
<->  ( c  e.  om  /\  d  e.  N. )
)
5755, 56bitrdi 195 . . . . . . . . . . . . 13  |-  ( g  =  <. c ,  d
>.  ->  ( g  e.  ( om  X.  N. ) 
<->  ( c  e.  om  /\  d  e.  N. )
) )
5857biimpcd 158 . . . . . . . . . . . 12  |-  ( g  e.  ( om  X.  N. )  ->  ( g  =  <. c ,  d
>.  ->  ( c  e. 
om  /\  d  e.  N. ) ) )
5954, 58im2anan9 593 . . . . . . . . . . 11  |-  ( ( f  e.  ( om 
X.  N. )  /\  g  e.  ( om  X.  N. ) )  ->  (
( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  ->  ( ( a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) ) )
6059imp 123 . . . . . . . . . 10  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( f  = 
<. a ,  b >.  /\  g  =  <. c ,  d >. )
)  ->  ( (
a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) )
6160adantrr 476 . . . . . . . . 9  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) )
62 pinn 7271 . . . . . . . . . . . 12  |-  ( d  e.  N.  ->  d  e.  om )
63 nnmcom 6468 . . . . . . . . . . . 12  |-  ( ( a  e.  om  /\  d  e.  om )  ->  ( a  .o  d
)  =  ( d  .o  a ) )
6462, 63sylan2 284 . . . . . . . . . . 11  |-  ( ( a  e.  om  /\  d  e.  N. )  ->  ( a  .o  d
)  =  ( d  .o  a ) )
65 pinn 7271 . . . . . . . . . . . 12  |-  ( b  e.  N.  ->  b  e.  om )
66 nnmcom 6468 . . . . . . . . . . . 12  |-  ( ( b  e.  om  /\  c  e.  om )  ->  ( b  .o  c
)  =  ( c  .o  b ) )
6765, 66sylan 281 . . . . . . . . . . 11  |-  ( ( b  e.  N.  /\  c  e.  om )  ->  ( b  .o  c
)  =  ( c  .o  b ) )
6864, 67eqeqan12d 2186 . . . . . . . . . 10  |-  ( ( ( a  e.  om  /\  d  e.  N. )  /\  ( b  e.  N.  /\  c  e.  om )
)  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
6968an42s 584 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
)  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
7061, 69syl 14 . . . . . . . 8  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
7150, 70mpbid 146 . . . . . . 7  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( d  .o  a )  =  ( c  .o  b ) )
7271eqcomd 2176 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( c  .o  b )  =  ( d  .o  a ) )
7347, 49, 72jca32 308 . . . . 5  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
g  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
74732eximi 1594 . . . 4  |-  ( E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
75742eximi 1594 . . 3  |-  ( E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
7645, 75syl 14 . 2  |-  ( f ~Q0  g  ->  E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
77 exrot4 1684 . . 3  |-  ( E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
78 19.42vv 1904 . . . . 5  |-  ( E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
79782exbii 1599 . . . 4  |-  ( E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  E. c E. d
( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. )
)  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
80 19.42vv 1904 . . . . 5  |-  ( E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
81 opeq12 3767 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  -> 
<. z ,  w >.  = 
<. c ,  d >.
)
8281eqeq2d 2182 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( g  =  <. z ,  w >.  <->  g  =  <. c ,  d >.
) )
8382anbi1d 462 . . . . . . . 8  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( g  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  <->  ( g  =  <. c ,  d
>.  /\  f  =  <. v ,  u >. )
) )
84 simpl 108 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  ->  z  =  c )
8584oveq1d 5868 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( z  .o  u
)  =  ( c  .o  u ) )
86 simpr 109 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  ->  w  =  d )
8786oveq1d 5868 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( w  .o  v
)  =  ( d  .o  v ) )
8885, 87eqeq12d 2185 . . . . . . . 8  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( z  .o  u )  =  ( w  .o  v )  <-> 
( c  .o  u
)  =  ( d  .o  v ) ) )
8983, 88anbi12d 470 . . . . . . 7  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( g  = 
<. c ,  d >.  /\  f  =  <. v ,  u >. )  /\  ( c  .o  u
)  =  ( d  .o  v ) ) ) )
90 opeq12 3767 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  -> 
<. v ,  u >.  = 
<. a ,  b >.
)
9190eqeq2d 2182 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( f  =  <. v ,  u >.  <->  f  =  <. a ,  b >.
) )
9291anbi2d 461 . . . . . . . 8  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( g  = 
<. c ,  d >.  /\  f  =  <. v ,  u >. )  <->  ( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. ) ) )
93 simpr 109 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  ->  u  =  b )
9493oveq2d 5869 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( c  .o  u
)  =  ( c  .o  b ) )
95 simpl 108 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  ->  v  =  a )
9695oveq2d 5869 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( d  .o  v
)  =  ( d  .o  a ) )
9794, 96eqeq12d 2185 . . . . . . . 8  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( c  .o  u )  =  ( d  .o  v )  <-> 
( c  .o  b
)  =  ( d  .o  a ) ) )
9892, 97anbi12d 470 . . . . . . 7  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( ( g  =  <. c ,  d
>.  /\  f  =  <. v ,  u >. )  /\  ( c  .o  u
)  =  ( d  .o  v ) )  <-> 
( ( g  = 
<. c ,  d >.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
9989, 98cbvex4v 1923 . . . . . 6  |-  ( E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )
100 eleq1 2233 . . . . . . . . . 10  |-  ( x  =  g  ->  (
x  e.  ( om 
X.  N. )  <->  g  e.  ( om  X.  N. )
) )
101100anbi1d 462 . . . . . . . . 9  |-  ( x  =  g  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
102 eqeq1 2177 . . . . . . . . . . . 12  |-  ( x  =  g  ->  (
x  =  <. z ,  w >.  <->  g  =  <. z ,  w >. )
)
103102anbi1d 462 . . . . . . . . . . 11  |-  ( x  =  g  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( g  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
104103anbi1d 462 . . . . . . . . . 10  |-  ( x  =  g  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
1051044exbidv 1863 . . . . . . . . 9  |-  ( x  =  g  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
106101, 105anbi12d 470 . . . . . . . 8  |-  ( x  =  g  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
107 eleq1 2233 . . . . . . . . . 10  |-  ( y  =  f  ->  (
y  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
108107anbi2d 461 . . . . . . . . 9  |-  ( y  =  f  ->  (
( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) ) ) )
109 eqeq1 2177 . . . . . . . . . . . 12  |-  ( y  =  f  ->  (
y  =  <. v ,  u >.  <->  f  =  <. v ,  u >. )
)
110109anbi2d 461 . . . . . . . . . . 11  |-  ( y  =  f  ->  (
( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( g  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. ) ) )
111110anbi1d 462 . . . . . . . . . 10  |-  ( y  =  f  ->  (
( ( g  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
1121114exbidv 1863 . . . . . . . . 9  |-  ( y  =  f  ->  ( E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
113108, 112anbi12d 470 . . . . . . . 8  |-  ( y  =  f  ->  (
( ( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
1142, 1, 106, 113, 17brab 4257 . . . . . . 7  |-  ( g ~Q0  f  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
115114biimpri 132 . . . . . 6  |-  ( ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  ->  g ~Q0  f )
11699, 115sylan2br 286 . . . . 5  |-  ( ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11780, 116sylbi 120 . . . 4  |-  ( E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11879, 117sylbi 120 . . 3  |-  ( E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11977, 118sylbi 120 . 2  |-  ( E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
12076, 119syl 14 1  |-  ( f ~Q0  g  ->  g ~Q0  f )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   <.cop 3586   class class class wbr 3989   omcom 4574    X. cxp 4609  (class class class)co 5853    .o comu 6393   N.cnpi 7234   ~Q0 ceq0 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-ni 7266  df-enq0 7386
This theorem is referenced by:  enq0er  7397
  Copyright terms: Public domain W3C validator