| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elvvv | Unicode version | ||
| Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.) |
| Ref | Expression |
|---|---|
| elvvv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4736 |
. 2
| |
| 2 | anass 401 |
. . . . 5
| |
| 3 | 19.42vv 1958 |
. . . . . 6
| |
| 4 | ancom 266 |
. . . . . . 7
| |
| 5 | 4 | 2exbii 1652 |
. . . . . 6
|
| 6 | vex 2802 |
. . . . . . . 8
| |
| 7 | 6 | biantru 302 |
. . . . . . 7
|
| 8 | elvv 4781 |
. . . . . . . 8
| |
| 9 | 8 | anbi2i 457 |
. . . . . . 7
|
| 10 | 7, 9 | bitr3i 186 |
. . . . . 6
|
| 11 | 3, 5, 10 | 3bitr4ri 213 |
. . . . 5
|
| 12 | 2, 11 | bitr3i 186 |
. . . 4
|
| 13 | 12 | 2exbii 1652 |
. . 3
|
| 14 | exrot4 1737 |
. . . 4
| |
| 15 | excom 1710 |
. . . . . 6
| |
| 16 | vex 2802 |
. . . . . . . . 9
| |
| 17 | vex 2802 |
. . . . . . . . 9
| |
| 18 | 16, 17 | opex 4315 |
. . . . . . . 8
|
| 19 | opeq1 3857 |
. . . . . . . . 9
| |
| 20 | 19 | eqeq2d 2241 |
. . . . . . . 8
|
| 21 | 18, 20 | ceqsexv 2839 |
. . . . . . 7
|
| 22 | 21 | exbii 1651 |
. . . . . 6
|
| 23 | 15, 22 | bitri 184 |
. . . . 5
|
| 24 | 23 | 2exbii 1652 |
. . . 4
|
| 25 | 14, 24 | bitr3i 186 |
. . 3
|
| 26 | 13, 25 | bitri 184 |
. 2
|
| 27 | 1, 26 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: ssrelrel 4819 dftpos3 6408 |
| Copyright terms: Public domain | W3C validator |