| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elvvv | Unicode version | ||
| Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| elvvv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxp 4680 | 
. 2
 | |
| 2 | anass 401 | 
. . . . 5
 | |
| 3 | 19.42vv 1926 | 
. . . . . 6
 | |
| 4 | ancom 266 | 
. . . . . . 7
 | |
| 5 | 4 | 2exbii 1620 | 
. . . . . 6
 | 
| 6 | vex 2766 | 
. . . . . . . 8
 | |
| 7 | 6 | biantru 302 | 
. . . . . . 7
 | 
| 8 | elvv 4725 | 
. . . . . . . 8
 | |
| 9 | 8 | anbi2i 457 | 
. . . . . . 7
 | 
| 10 | 7, 9 | bitr3i 186 | 
. . . . . 6
 | 
| 11 | 3, 5, 10 | 3bitr4ri 213 | 
. . . . 5
 | 
| 12 | 2, 11 | bitr3i 186 | 
. . . 4
 | 
| 13 | 12 | 2exbii 1620 | 
. . 3
 | 
| 14 | exrot4 1705 | 
. . . 4
 | |
| 15 | excom 1678 | 
. . . . . 6
 | |
| 16 | vex 2766 | 
. . . . . . . . 9
 | |
| 17 | vex 2766 | 
. . . . . . . . 9
 | |
| 18 | 16, 17 | opex 4262 | 
. . . . . . . 8
 | 
| 19 | opeq1 3808 | 
. . . . . . . . 9
 | |
| 20 | 19 | eqeq2d 2208 | 
. . . . . . . 8
 | 
| 21 | 18, 20 | ceqsexv 2802 | 
. . . . . . 7
 | 
| 22 | 21 | exbii 1619 | 
. . . . . 6
 | 
| 23 | 15, 22 | bitri 184 | 
. . . . 5
 | 
| 24 | 23 | 2exbii 1620 | 
. . . 4
 | 
| 25 | 14, 24 | bitr3i 186 | 
. . 3
 | 
| 26 | 13, 25 | bitri 184 | 
. 2
 | 
| 27 | 1, 26 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: ssrelrel 4763 dftpos3 6320 | 
| Copyright terms: Public domain | W3C validator |