ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsb Unicode version

Theorem exsb 2027
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb  |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem exsb
StepHypRef Expression
1 ax-17 1540 . . 3  |-  ( ph  ->  A. y ph )
21sb8eh 1869 . 2  |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
3 sb6 1901 . . 3  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
43exbii 1619 . 2  |-  ( E. y [ y  /  x ] ph  <->  E. y A. x ( x  =  y  ->  ph ) )
52, 4bitri 184 1  |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362   E.wex 1506   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-sb 1777
This theorem is referenced by:  2exsb  2028
  Copyright terms: Public domain W3C validator