ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsb Unicode version

Theorem exsb 2001
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb  |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem exsb
StepHypRef Expression
1 ax-17 1519 . . 3  |-  ( ph  ->  A. y ph )
21sb8eh 1848 . 2  |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
3 sb6 1879 . . 3  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
43exbii 1598 . 2  |-  ( E. y [ y  /  x ] ph  <->  E. y A. x ( x  =  y  ->  ph ) )
52, 4bitri 183 1  |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346   E.wex 1485   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  2exsb  2002
  Copyright terms: Public domain W3C validator