ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsb Unicode version

Theorem exsb 2024
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb  |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem exsb
StepHypRef Expression
1 ax-17 1537 . . 3  |-  ( ph  ->  A. y ph )
21sb8eh 1866 . 2  |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
3 sb6 1898 . . 3  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
43exbii 1616 . 2  |-  ( E. y [ y  /  x ] ph  <->  E. y A. x ( x  =  y  ->  ph ) )
52, 4bitri 184 1  |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362   E.wex 1503   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-sb 1774
This theorem is referenced by:  2exsb  2025
  Copyright terms: Public domain W3C validator