ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exsb Unicode version

Theorem 2exsb 1997
Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
2exsb  |-  ( E. x E. y ph  <->  E. z E. w A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph ) )
Distinct variable groups:    x, y, z   
y, w, z    ph, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem 2exsb
StepHypRef Expression
1 exsb 1996 . . . 4  |-  ( E. y ph  <->  E. w A. y ( y  =  w  ->  ph ) )
21exbii 1593 . . 3  |-  ( E. x E. y ph  <->  E. x E. w A. y ( y  =  w  ->  ph ) )
3 excom 1652 . . 3  |-  ( E. x E. w A. y ( y  =  w  ->  ph )  <->  E. w E. x A. y ( y  =  w  ->  ph ) )
42, 3bitri 183 . 2  |-  ( E. x E. y ph  <->  E. w E. x A. y ( y  =  w  ->  ph ) )
5 exsb 1996 . . . 4  |-  ( E. x A. y ( y  =  w  ->  ph )  <->  E. z A. x
( x  =  z  ->  A. y ( y  =  w  ->  ph )
) )
6 impexp 261 . . . . . . . 8  |-  ( ( ( x  =  z  /\  y  =  w )  ->  ph )  <->  ( x  =  z  ->  ( y  =  w  ->  ph )
) )
76albii 1458 . . . . . . 7  |-  ( A. y ( ( x  =  z  /\  y  =  w )  ->  ph )  <->  A. y ( x  =  z  ->  ( y  =  w  ->  ph )
) )
8 19.21v 1861 . . . . . . 7  |-  ( A. y ( x  =  z  ->  ( y  =  w  ->  ph )
)  <->  ( x  =  z  ->  A. y
( y  =  w  ->  ph ) ) )
97, 8bitr2i 184 . . . . . 6  |-  ( ( x  =  z  ->  A. y ( y  =  w  ->  ph ) )  <->  A. y ( ( x  =  z  /\  y  =  w )  ->  ph )
)
109albii 1458 . . . . 5  |-  ( A. x ( x  =  z  ->  A. y
( y  =  w  ->  ph ) )  <->  A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph )
)
1110exbii 1593 . . . 4  |-  ( E. z A. x ( x  =  z  ->  A. y ( y  =  w  ->  ph ) )  <->  E. z A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph )
)
125, 11bitri 183 . . 3  |-  ( E. x A. y ( y  =  w  ->  ph )  <->  E. z A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph )
)
1312exbii 1593 . 2  |-  ( E. w E. x A. y ( y  =  w  ->  ph )  <->  E. w E. z A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph )
)
14 excom 1652 . 2  |-  ( E. w E. z A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph )  <->  E. z E. w A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph )
)
154, 13, 143bitri 205 1  |-  ( E. x E. y ph  <->  E. z E. w A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator