ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsb GIF version

Theorem exsb 2008
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exsb
StepHypRef Expression
1 ax-17 1526 . . 3 (𝜑 → ∀𝑦𝜑)
21sb8eh 1855 . 2 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
3 sb6 1886 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
43exbii 1605 . 2 (∃𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
52, 4bitri 184 1 (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  wex 1492  [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-sb 1763
This theorem is referenced by:  2exsb  2009
  Copyright terms: Public domain W3C validator