ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsb GIF version

Theorem exsb 2036
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exsb
StepHypRef Expression
1 ax-17 1549 . . 3 (𝜑 → ∀𝑦𝜑)
21sb8eh 1878 . 2 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
3 sb6 1910 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
43exbii 1628 . 2 (∃𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
52, 4bitri 184 1 (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wex 1515  [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by:  2exsb  2037
  Copyright terms: Public domain W3C validator