Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exsb | GIF version |
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.) |
Ref | Expression |
---|---|
exsb | ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | sb8eh 1848 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
3 | sb6 1879 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
4 | 3 | exbii 1598 | . 2 ⊢ (∃𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
5 | 2, 4 | bitri 183 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 ∃wex 1485 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: 2exsb 2002 |
Copyright terms: Public domain | W3C validator |