ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsb GIF version

Theorem exsb 2001
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exsb
StepHypRef Expression
1 ax-17 1519 . . 3 (𝜑 → ∀𝑦𝜑)
21sb8eh 1848 . 2 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
3 sb6 1879 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
43exbii 1598 . 2 (∃𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
52, 4bitri 183 1 (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  wex 1485  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  2exsb  2002
  Copyright terms: Public domain W3C validator