| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exsb | GIF version | ||
| Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.) |
| Ref | Expression |
|---|---|
| exsb | ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | sb8eh 1901 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 3 | sb6 1933 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 4 | 3 | exbii 1651 | . 2 ⊢ (∃𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 ∃wex 1538 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 |
| This theorem is referenced by: 2exsb 2060 |
| Copyright terms: Public domain | W3C validator |