ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq2d Unicode version

Theorem f1oeq2d 5520
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
f1oeq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
f1oeq2d  |-  ( ph  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )

Proof of Theorem f1oeq2d
StepHypRef Expression
1 f1oeq2d.1 . 2  |-  ( ph  ->  A  =  B )
2 f1oeq2 5513 . 2  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   -1-1-onto->wf1o 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279
This theorem is referenced by:  prodmodclem3  11919  prodmodc  11922  fprodseq  11927
  Copyright terms: Public domain W3C validator