| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f1oeq2 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) | 
| Ref | Expression | 
|---|---|
| f1oeq2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1eq2 5459 | 
. . 3
 | |
| 2 | foeq2 5477 | 
. . 3
 | |
| 3 | 1, 2 | anbi12d 473 | 
. 2
 | 
| 4 | df-f1o 5265 | 
. 2
 | |
| 5 | df-f1o 5265 | 
. 2
 | |
| 6 | 3, 4, 5 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: f1oeq23 5495 f1oeq123d 5498 f1oeq2d 5500 f1osng 5545 isoeq4 5851 bren 6806 f1dmvrnfibi 7010 summodclem3 11545 summodclem2a 11546 summodc 11548 fsum3 11552 fsumf1o 11555 sumsnf 11574 fprodf1o 11753 prodsnf 11757 znfi 14211 znhash 14212 | 
| Copyright terms: Public domain | W3C validator |