| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq2 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 5462 |
. . 3
| |
| 2 | foeq2 5480 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5266 |
. 2
| |
| 5 | df-f1o 5266 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: f1oeq23 5498 f1oeq123d 5501 f1oeq2d 5503 f1osng 5548 isoeq4 5854 bren 6815 f1dmvrnfibi 7019 summodclem3 11562 summodclem2a 11563 summodc 11565 fsum3 11569 fsumf1o 11572 sumsnf 11591 fprodf1o 11770 prodsnf 11774 znfi 14287 znhash 14288 |
| Copyright terms: Public domain | W3C validator |