ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq2 Unicode version

Theorem f1oeq2 5489
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 5455 . . 3  |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )
2 foeq2 5473 . . 3  |-  ( A  =  B  ->  ( F : A -onto-> C  <->  F : B -onto-> C ) )
31, 2anbi12d 473 . 2  |-  ( A  =  B  ->  (
( F : A -1-1-> C  /\  F : A -onto-> C )  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) ) )
4 df-f1o 5261 . 2  |-  ( F : A -1-1-onto-> C  <->  ( F : A -1-1-> C  /\  F : A -onto-> C ) )
5 df-f1o 5261 . 2  |-  ( F : B -1-1-onto-> C  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) )
63, 4, 53bitr4g 223 1  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   -1-1->wf1 5251   -onto->wfo 5252   -1-1-onto->wf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  f1oeq23  5491  f1oeq123d  5494  f1oeq2d  5496  f1osng  5541  isoeq4  5847  bren  6801  f1dmvrnfibi  7003  summodclem3  11523  summodclem2a  11524  summodc  11526  fsum3  11530  fsumf1o  11533  sumsnf  11552  fprodf1o  11731  prodsnf  11735  znfi  14143  znhash  14144
  Copyright terms: Public domain W3C validator