ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq2 Unicode version

Theorem f1oeq2 5561
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 5527 . . 3  |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )
2 foeq2 5545 . . 3  |-  ( A  =  B  ->  ( F : A -onto-> C  <->  F : B -onto-> C ) )
31, 2anbi12d 473 . 2  |-  ( A  =  B  ->  (
( F : A -1-1-> C  /\  F : A -onto-> C )  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) ) )
4 df-f1o 5325 . 2  |-  ( F : A -1-1-onto-> C  <->  ( F : A -1-1-> C  /\  F : A -onto-> C ) )
5 df-f1o 5325 . 2  |-  ( F : B -1-1-onto-> C  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) )
63, 4, 53bitr4g 223 1  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   -1-1->wf1 5315   -onto->wfo 5316   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  f1oeq23  5563  f1oeq123d  5566  f1oeq2d  5568  f1osng  5614  isoeq4  5928  breng  6894  bren  6895  f1dmvrnfibi  7111  summodclem3  11891  summodclem2a  11892  summodc  11894  fsum3  11898  fsumf1o  11901  sumsnf  11920  fprodf1o  12099  prodsnf  12103  znfi  14619  znhash  14620
  Copyright terms: Public domain W3C validator