| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq2 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 5527 |
. . 3
| |
| 2 | foeq2 5545 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5325 |
. 2
| |
| 5 | df-f1o 5325 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: f1oeq23 5563 f1oeq123d 5566 f1oeq2d 5568 f1osng 5614 isoeq4 5928 breng 6894 bren 6895 f1dmvrnfibi 7111 summodclem3 11891 summodclem2a 11892 summodc 11894 fsum3 11898 fsumf1o 11901 sumsnf 11920 fprodf1o 12099 prodsnf 12103 znfi 14619 znhash 14620 |
| Copyright terms: Public domain | W3C validator |