| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq2 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 5499 |
. . 3
| |
| 2 | foeq2 5517 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5297 |
. 2
| |
| 5 | df-f1o 5297 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: f1oeq23 5535 f1oeq123d 5538 f1oeq2d 5540 f1osng 5586 isoeq4 5896 breng 6857 bren 6858 f1dmvrnfibi 7072 summodclem3 11806 summodclem2a 11807 summodc 11809 fsum3 11813 fsumf1o 11816 sumsnf 11835 fprodf1o 12014 prodsnf 12018 znfi 14532 znhash 14533 |
| Copyright terms: Public domain | W3C validator |