| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq2 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 5479 |
. . 3
| |
| 2 | foeq2 5497 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5279 |
. 2
| |
| 5 | df-f1o 5279 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 |
| This theorem is referenced by: f1oeq23 5515 f1oeq123d 5518 f1oeq2d 5520 f1osng 5565 isoeq4 5875 breng 6836 bren 6837 f1dmvrnfibi 7048 summodclem3 11724 summodclem2a 11725 summodc 11727 fsum3 11731 fsumf1o 11734 sumsnf 11753 fprodf1o 11932 prodsnf 11936 znfi 14450 znhash 14451 |
| Copyright terms: Public domain | W3C validator |