Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq2 | Unicode version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq2 5389 | . . 3 | |
2 | foeq2 5407 | . . 3 | |
3 | 1, 2 | anbi12d 465 | . 2 |
4 | df-f1o 5195 | . 2 | |
5 | df-f1o 5195 | . 2 | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wf1 5185 wfo 5186 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: f1oeq23 5424 f1oeq123d 5427 f1oeq2d 5428 f1osng 5473 isoeq4 5772 bren 6713 f1dmvrnfibi 6909 summodclem3 11321 summodclem2a 11322 summodc 11324 fsum3 11328 fsumf1o 11331 sumsnf 11350 fprodf1o 11529 prodsnf 11533 |
Copyright terms: Public domain | W3C validator |