ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq2 Unicode version

Theorem f1oeq2 5432
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 5399 . . 3  |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )
2 foeq2 5417 . . 3  |-  ( A  =  B  ->  ( F : A -onto-> C  <->  F : B -onto-> C ) )
31, 2anbi12d 470 . 2  |-  ( A  =  B  ->  (
( F : A -1-1-> C  /\  F : A -onto-> C )  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) ) )
4 df-f1o 5205 . 2  |-  ( F : A -1-1-onto-> C  <->  ( F : A -1-1-> C  /\  F : A -onto-> C ) )
5 df-f1o 5205 . 2  |-  ( F : B -1-1-onto-> C  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) )
63, 4, 53bitr4g 222 1  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   -1-1->wf1 5195   -onto->wfo 5196   -1-1-onto->wf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by:  f1oeq23  5434  f1oeq123d  5437  f1oeq2d  5438  f1osng  5483  isoeq4  5783  bren  6725  f1dmvrnfibi  6921  summodclem3  11343  summodclem2a  11344  summodc  11346  fsum3  11350  fsumf1o  11353  sumsnf  11372  fprodf1o  11551  prodsnf  11555
  Copyright terms: Public domain W3C validator