ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq2 Unicode version

Theorem f1oeq2 5422
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq2  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )

Proof of Theorem f1oeq2
StepHypRef Expression
1 f1eq2 5389 . . 3  |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )
2 foeq2 5407 . . 3  |-  ( A  =  B  ->  ( F : A -onto-> C  <->  F : B -onto-> C ) )
31, 2anbi12d 465 . 2  |-  ( A  =  B  ->  (
( F : A -1-1-> C  /\  F : A -onto-> C )  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) ) )
4 df-f1o 5195 . 2  |-  ( F : A -1-1-onto-> C  <->  ( F : A -1-1-> C  /\  F : A -onto-> C ) )
5 df-f1o 5195 . 2  |-  ( F : B -1-1-onto-> C  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) )
63, 4, 53bitr4g 222 1  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   -1-1->wf1 5185   -onto->wfo 5186   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  f1oeq23  5424  f1oeq123d  5427  f1oeq2d  5428  f1osng  5473  isoeq4  5772  bren  6713  f1dmvrnfibi  6909  summodclem3  11321  summodclem2a  11322  summodc  11324  fsum3  11328  fsumf1o  11331  sumsnf  11350  fprodf1o  11529  prodsnf  11533
  Copyright terms: Public domain W3C validator