Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq1d | Unicode version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq1d.1 |
Ref | Expression |
---|---|
f1oeq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1d.1 | . 2 | |
2 | f1oeq1 5438 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1351 wf1o 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-ext 2155 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-nf 1457 df-sb 1759 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-v 2735 df-un 3128 df-in 3130 df-ss 3137 df-sn 3592 df-pr 3593 df-op 3595 df-br 3996 df-opab 4057 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 |
This theorem is referenced by: grplactcnv 12828 |
Copyright terms: Public domain | W3C validator |