ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq1d Unicode version

Theorem f1oeq1d 5445
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
f1oeq1d.1  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
f1oeq1d  |-  ( ph  ->  ( F : A -1-1-onto-> B  <->  G : A -1-1-onto-> B ) )

Proof of Theorem f1oeq1d
StepHypRef Expression
1 f1oeq1d.1 . 2  |-  ( ph  ->  F  =  G )
2 f1oeq1 5438 . 2  |-  ( F  =  G  ->  ( F : A -1-1-onto-> B  <->  G : A -1-1-onto-> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : A -1-1-onto-> B  <->  G : A -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1351   -1-1-onto->wf1o 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-ext 2155
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-v 2735  df-un 3128  df-in 3130  df-ss 3137  df-sn 3592  df-pr 3593  df-op 3595  df-br 3996  df-opab 4057  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212
This theorem is referenced by:  grplactcnv  12828
  Copyright terms: Public domain W3C validator