ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq3d Unicode version

Theorem f1oeq3d 5429
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
f1oeq3d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
f1oeq3d  |-  ( ph  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )

Proof of Theorem f1oeq3d
StepHypRef Expression
1 f1oeq3d.1 . 2  |-  ( ph  ->  A  =  B )
2 f1oeq3 5423 . 2  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  fprodssdc  11531  fprodcnv  11566
  Copyright terms: Public domain W3C validator