ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq3d Unicode version

Theorem f1oeq3d 5569
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
f1oeq3d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
f1oeq3d  |-  ( ph  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )

Proof of Theorem f1oeq3d
StepHypRef Expression
1 f1oeq3d.1 . 2  |-  ( ph  ->  A  =  B )
2 f1oeq3 5562 . 2  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  fprodssdc  12101  fprodcnv  12136  pwssnf1o  13331  uspgrf1oedg  15974  usgrf1oedg  16003
  Copyright terms: Public domain W3C validator