| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq3d | Unicode version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq3d.1 |
|
| Ref | Expression |
|---|---|
| f1oeq3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3d.1 |
. 2
| |
| 2 | f1oeq3 5562 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: fprodssdc 12101 fprodcnv 12136 pwssnf1o 13331 uspgrf1oedg 15974 usgrf1oedg 16003 |
| Copyright terms: Public domain | W3C validator |