| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f1oeq2d | GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq2 5493 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 –1-1-onto→wf1o 5257 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: prodmodclem3 11740 prodmodc 11743 fprodseq 11748 | 
| Copyright terms: Public domain | W3C validator |