ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem3 Unicode version

Theorem prodmodclem3 11585
Description: Lemma for prodmodc 11588. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmodc.3  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
prodmodclem3.4  |-  H  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 ) )
prodmolem3.5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
prodmolem3.6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
prodmolem3.7  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
Assertion
Ref Expression
prodmodclem3  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Distinct variable groups:    A, j, k    B, j    j, G    j, K, k    j, M    f,
j, k    ph, k
Allowed substitution hints:    ph( f, j)    A( f)    B( f, k)    F( f, j, k)    G( f, k)    H( f, j, k)    K( f)    M( f, k)    N( f, j, k)

Proof of Theorem prodmodclem3
Dummy variables  i  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 7940 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC )  ->  ( m  x.  y
)  e.  CC )
21adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC ) )  -> 
( m  x.  y
)  e.  CC )
3 mulcom 7942 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC )  ->  ( m  x.  y
)  =  ( y  x.  m ) )
43adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC ) )  -> 
( m  x.  y
)  =  ( y  x.  m ) )
5 mulass 7944 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( m  x.  y
)  x.  x )  =  ( m  x.  ( y  x.  x
) ) )
65adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC  /\  x  e.  CC ) )  -> 
( ( m  x.  y )  x.  x
)  =  ( m  x.  ( y  x.  x ) ) )
7 prodmolem3.5 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
87simpld 112 . . . 4  |-  ( ph  ->  M  e.  NN )
9 nnuz 9565 . . . 4  |-  NN  =  ( ZZ>= `  1 )
108, 9eleqtrdi 2270 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
11 prodmolem3.6 . . . . . 6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
12 f1ocnv 5476 . . . . . 6  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  `' f : A -1-1-onto-> ( 1 ... M
) )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  `' f : A -1-1-onto-> (
1 ... M ) )
14 prodmolem3.7 . . . . 5  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
15 f1oco 5486 . . . . 5  |-  ( ( `' f : A -1-1-onto-> (
1 ... M )  /\  K : ( 1 ... N ) -1-1-onto-> A )  ->  ( `' f  o.  K
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
1613, 14, 15syl2anc 411 . . . 4  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
177ancomd 267 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  M  e.  NN ) )
1817, 14, 11nnf1o 11386 . . . . . 6  |-  ( ph  ->  M  =  N )
1918oveq2d 5893 . . . . 5  |-  ( ph  ->  ( 1 ... M
)  =  ( 1 ... N ) )
2019f1oeq2d 5459 . . . 4  |-  ( ph  ->  ( ( `' f  o.  K ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
)  <->  ( `' f  o.  K ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... M
) ) )
2116, 20mpbird 167 . . 3  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
22 prodmodc.3 . . . . 5  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
23 breq1 4008 . . . . . 6  |-  ( j  =  m  ->  (
j  <_  ( `  A
)  <->  m  <_  ( `  A
) ) )
24 fveq2 5517 . . . . . . 7  |-  ( j  =  m  ->  (
f `  j )  =  ( f `  m ) )
2524csbeq1d 3066 . . . . . 6  |-  ( j  =  m  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( f `  m )  /  k ]_ B )
2623, 25ifbieq1d 3558 . . . . 5  |-  ( j  =  m  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( m  <_  ( `  A ) ,  [_ ( f `  m )  /  k ]_ B ,  1 ) )
27 elnnuz 9566 . . . . . . 7  |-  ( m  e.  NN  <->  m  e.  ( ZZ>= `  1 )
)
2827biimpri 133 . . . . . 6  |-  ( m  e.  ( ZZ>= `  1
)  ->  m  e.  NN )
2928adantl 277 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  m  e.  NN )
30 f1of 5463 . . . . . . . . . 10  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  f :
( 1 ... M
) --> A )
3111, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  f : ( 1 ... M ) --> A )
3231ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
f : ( 1 ... M ) --> A )
33 1zzd 9282 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
1  e.  ZZ )
348nnzd 9376 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
3534ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  M  e.  ZZ )
36 eluzelz 9539 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  1
)  ->  m  e.  ZZ )
3736ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ZZ )
3833, 35, 373jca 1177 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1  e.  ZZ  /\  M  e.  ZZ  /\  m  e.  ZZ )
)
39 eluzle 9542 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  1
)  ->  1  <_  m )
4039ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
1  <_  m )
41 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  <_  ( `  A )
)
428nnnn0d 9231 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  NN0 )
43 hashfz1 10765 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( `  (
1 ... M ) )  =  M )
4442, 43syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  M )
45 1zzd 9282 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
4645, 34fzfigd 10433 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
4746, 11fihasheqf1od 10771 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  ( `  A )
)
4844, 47eqtr3d 2212 . . . . . . . . . . . 12  |-  ( ph  ->  M  =  ( `  A
) )
4948ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  M  =  ( `  A
) )
5041, 49breqtrrd 4033 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  <_  M )
5140, 50jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1  <_  m  /\  m  <_  M ) )
52 elfz2 10017 . . . . . . . . 9  |-  ( m  e.  ( 1 ... M )  <->  ( (
1  e.  ZZ  /\  M  e.  ZZ  /\  m  e.  ZZ )  /\  (
1  <_  m  /\  m  <_  M ) ) )
5338, 51, 52sylanbrc 417 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ( 1 ... M ) )
5432, 53ffvelcdmd 5654 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( f `  m
)  e.  A )
55 prodmo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5655ralrimiva 2550 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
5756ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  A. k  e.  A  B  e.  CC )
58 nfcsb1v 3092 . . . . . . . . 9  |-  F/_ k [_ ( f `  m
)  /  k ]_ B
5958nfel1 2330 . . . . . . . 8  |-  F/ k
[_ ( f `  m )  /  k ]_ B  e.  CC
60 csbeq1a 3068 . . . . . . . . 9  |-  ( k  =  ( f `  m )  ->  B  =  [_ ( f `  m )  /  k ]_ B )
6160eleq1d 2246 . . . . . . . 8  |-  ( k  =  ( f `  m )  ->  ( B  e.  CC  <->  [_ ( f `
 m )  / 
k ]_ B  e.  CC ) )
6259, 61rspc 2837 . . . . . . 7  |-  ( ( f `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
)
6354, 57, 62sylc 62 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
64 1cnd 7975 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  -.  m  <_  ( `  A )
)  ->  1  e.  CC )
6529nnzd 9376 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  m  e.  ZZ )
6648, 34eqeltrrd 2255 . . . . . . . 8  |-  ( ph  ->  ( `  A )  e.  ZZ )
6766adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  ZZ )
68 zdcle 9331 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  m  <_  ( `  A
) )
6965, 67, 68syl2anc 411 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  -> DECID  m  <_  ( `  A
) )
7063, 64, 69ifcldadc 3565 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  if (
m  <_  ( `  A
) ,  [_ (
f `  m )  /  k ]_ B ,  1 )  e.  CC )
7122, 26, 29, 70fvmptd3 5611 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( G `  m )  =  if ( m  <_  ( `  A ) ,  [_ ( f `  m
)  /  k ]_ B ,  1 ) )
7271, 70eqeltrd 2254 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( G `  m )  e.  CC )
73 prodmodclem3.4 . . . . 5  |-  H  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 ) )
74 fveq2 5517 . . . . . . 7  |-  ( j  =  m  ->  ( K `  j )  =  ( K `  m ) )
7574csbeq1d 3066 . . . . . 6  |-  ( j  =  m  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  m )  /  k ]_ B )
7623, 75ifbieq1d 3558 . . . . 5  |-  ( j  =  m  ->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 )  =  if ( m  <_ 
( `  A ) , 
[_ ( K `  m )  /  k ]_ B ,  1 ) )
7714ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  K : ( 1 ... N ) -1-1-onto-> A )
78 f1of 5463 . . . . . . . . 9  |-  ( K : ( 1 ... N ) -1-1-onto-> A  ->  K :
( 1 ... N
) --> A )
7977, 78syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  K : ( 1 ... N ) --> A )
8019ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1 ... M
)  =  ( 1 ... N ) )
8153, 80eleqtrd 2256 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ( 1 ... N ) )
8279, 81ffvelcdmd 5654 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( K `  m
)  e.  A )
83 nfcsb1v 3092 . . . . . . . . 9  |-  F/_ k [_ ( K `  m
)  /  k ]_ B
8483nfel1 2330 . . . . . . . 8  |-  F/ k
[_ ( K `  m )  /  k ]_ B  e.  CC
85 csbeq1a 3068 . . . . . . . . 9  |-  ( k  =  ( K `  m )  ->  B  =  [_ ( K `  m )  /  k ]_ B )
8685eleq1d 2246 . . . . . . . 8  |-  ( k  =  ( K `  m )  ->  ( B  e.  CC  <->  [_ ( K `
 m )  / 
k ]_ B  e.  CC ) )
8784, 86rspc 2837 . . . . . . 7  |-  ( ( K `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( K `  m
)  /  k ]_ B  e.  CC )
)
8882, 57, 87sylc 62 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  [_ ( K `  m
)  /  k ]_ B  e.  CC )
8988, 64, 69ifcldadc 3565 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  if (
m  <_  ( `  A
) ,  [_ ( K `  m )  /  k ]_ B ,  1 )  e.  CC )
9073, 76, 29, 89fvmptd3 5611 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( H `  m )  =  if ( m  <_  ( `  A ) ,  [_ ( K `  m )  /  k ]_ B ,  1 ) )
9190, 89eqeltrd 2254 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( H `  m )  e.  CC )
9219f1oeq2d 5459 . . . . . . . . . 10  |-  ( ph  ->  ( K : ( 1 ... M ) -1-1-onto-> A  <-> 
K : ( 1 ... N ) -1-1-onto-> A ) )
9314, 92mpbird 167 . . . . . . . . 9  |-  ( ph  ->  K : ( 1 ... M ) -1-1-onto-> A )
94 f1of 5463 . . . . . . . . 9  |-  ( K : ( 1 ... M ) -1-1-onto-> A  ->  K :
( 1 ... M
) --> A )
9593, 94syl 14 . . . . . . . 8  |-  ( ph  ->  K : ( 1 ... M ) --> A )
96 fvco3 5589 . . . . . . . 8  |-  ( ( K : ( 1 ... M ) --> A  /\  i  e.  ( 1 ... M ) )  ->  ( ( `' f  o.  K
) `  i )  =  ( `' f `
 ( K `  i ) ) )
9795, 96sylan 283 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  =  ( `' f `  ( K `
 i ) ) )
9897fveq2d 5521 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( f `
 ( `' f `
 ( K `  i ) ) ) )
9911adantr 276 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  f : ( 1 ... M ) -1-1-onto-> A )
10095ffvelcdmda 5653 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( K `  i )  e.  A )
101 f1ocnvfv2 5781 . . . . . . 7  |-  ( ( f : ( 1 ... M ) -1-1-onto-> A  /\  ( K `  i )  e.  A )  -> 
( f `  ( `' f `  ( K `  i )
) )  =  ( K `  i ) )
10299, 100, 101syl2anc 411 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( `' f `  ( K `  i ) ) )  =  ( K `  i ) )
10398, 102eqtrd 2210 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( K `
 i ) )
104103csbeq1d 3066 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  =  [_ ( K `
 i )  / 
k ]_ B )
105 breq1 4008 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( j  <_  ( `  A )  <->  ( ( `' f  o.  K
) `  i )  <_  ( `  A )
) )
106 fveq2 5517 . . . . . . . 8  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( f `  j
)  =  ( f `
 ( ( `' f  o.  K ) `
 i ) ) )
107106csbeq1d 3066 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  [_ ( f `  j
)  /  k ]_ B  =  [_ ( f `
 ( ( `' f  o.  K ) `
 i ) )  /  k ]_ B
)
108105, 107ifbieq1d 3558 . . . . . 6  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( ( ( `' f  o.  K ) `  i
)  <_  ( `  A
) ,  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B ,  1 ) )
109 f1of 5463 . . . . . . . . 9  |-  ( ( `' f  o.  K
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M )  -> 
( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
11021, 109syl 14 . . . . . . . 8  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
111110ffvelcdmda 5653 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  ( 1 ... M ) )
112 elfznn 10056 . . . . . . 7  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  e.  NN )
113111, 112syl 14 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  NN )
114 elfzle2 10030 . . . . . . . . . 10  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  <_  M
)
115111, 114syl 14 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  <_  M )
11648adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  M  =  ( `  A )
)
117115, 116breqtrd 4031 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  <_  ( `  A
) )
118117iftrued 3543 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( ( ( `' f  o.  K ) `
 i )  <_ 
( `  A ) , 
[_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ,  1 )  =  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B )
11956adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
120 nfcsb1v 3092 . . . . . . . . . . 11  |-  F/_ k [_ ( K `  i
)  /  k ]_ B
121120nfel1 2330 . . . . . . . . . 10  |-  F/ k
[_ ( K `  i )  /  k ]_ B  e.  CC
122 csbeq1a 3068 . . . . . . . . . . 11  |-  ( k  =  ( K `  i )  ->  B  =  [_ ( K `  i )  /  k ]_ B )
123122eleq1d 2246 . . . . . . . . . 10  |-  ( k  =  ( K `  i )  ->  ( B  e.  CC  <->  [_ ( K `
 i )  / 
k ]_ B  e.  CC ) )
124121, 123rspc 2837 . . . . . . . . 9  |-  ( ( K `  i )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( K `  i
)  /  k ]_ B  e.  CC )
)
125100, 119, 124sylc 62 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ ( K `  i )  /  k ]_ B  e.  CC )
126104, 125eqeltrd 2254 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  e.  CC )
127118, 126eqeltrd 2254 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( ( ( `' f  o.  K ) `
 i )  <_ 
( `  A ) , 
[_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ,  1 )  e.  CC )
12822, 108, 113, 127fvmptd3 5611 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  if ( ( ( `' f  o.  K ) `  i )  <_  ( `  A ) ,  [_ ( f `  (
( `' f  o.  K ) `  i
) )  /  k ]_ B ,  1 ) )
129128, 118eqtrd 2210 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B )
130 breq1 4008 . . . . . . 7  |-  ( j  =  i  ->  (
j  <_  ( `  A
)  <->  i  <_  ( `  A ) ) )
131 fveq2 5517 . . . . . . . 8  |-  ( j  =  i  ->  ( K `  j )  =  ( K `  i ) )
132131csbeq1d 3066 . . . . . . 7  |-  ( j  =  i  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  i )  /  k ]_ B )
133130, 132ifbieq1d 3558 . . . . . 6  |-  ( j  =  i  ->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 )  =  if ( i  <_ 
( `  A ) , 
[_ ( K `  i )  /  k ]_ B ,  1 ) )
134 elfznn 10056 . . . . . . 7  |-  ( i  e.  ( 1 ... M )  ->  i  e.  NN )
135134adantl 277 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  e.  NN )
136 elfzle2 10030 . . . . . . . . . 10  |-  ( i  e.  ( 1 ... M )  ->  i  <_  M )
137136adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  <_  M )
138137, 116breqtrd 4031 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  <_  ( `  A )
)
139138iftrued 3543 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( i  <_  ( `  A ) ,  [_ ( K `  i )  /  k ]_ B ,  1 )  = 
[_ ( K `  i )  /  k ]_ B )
140139, 125eqeltrd 2254 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( i  <_  ( `  A ) ,  [_ ( K `  i )  /  k ]_ B ,  1 )  e.  CC )
14173, 133, 135, 140fvmptd3 5611 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  if ( i  <_ 
( `  A ) , 
[_ ( K `  i )  /  k ]_ B ,  1 ) )
142141, 139eqtrd 2210 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  [_ ( K `  i )  /  k ]_ B )
143104, 129, 1423eqtr4rd 2221 . . 3  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  ( G `  ( ( `' f  o.  K ) `  i ) ) )
1442, 4, 6, 10, 21, 72, 91, 143seq3f1o 10506 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  G ) `
 M ) )
14518fveq2d 5521 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
146144, 145eqtr3d 2212 1  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   [_csb 3059   ifcif 3536   class class class wbr 4005    |-> cmpt 4066   `'ccnv 4627    o. ccom 4632   -->wf 5214   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877   CCcc 7811   1c1 7814    x. cmul 7818    <_ cle 7995   NNcn 8921   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010    seqcseq 10447  ♯chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-ihash 10758
This theorem is referenced by:  prodmodclem2a  11586  prodmodc  11588
  Copyright terms: Public domain W3C validator