ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem3 Unicode version

Theorem prodmodclem3 11376
Description: Lemma for prodmodc 11379. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmodc.3  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
prodmodclem3.4  |-  H  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 ) )
prodmolem3.5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
prodmolem3.6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
prodmolem3.7  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
Assertion
Ref Expression
prodmodclem3  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Distinct variable groups:    A, j, k    B, j    j, G    j, K, k    j, M    f,
j, k    ph, k
Allowed substitution hints:    ph( f, j)    A( f)    B( f, k)    F( f, j, k)    G( f, k)    H( f, j, k)    K( f)    M( f, k)    N( f, j, k)

Proof of Theorem prodmodclem3
Dummy variables  i  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 7771 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC )  ->  ( m  x.  y
)  e.  CC )
21adantl 275 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC ) )  -> 
( m  x.  y
)  e.  CC )
3 mulcom 7773 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC )  ->  ( m  x.  y
)  =  ( y  x.  m ) )
43adantl 275 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC ) )  -> 
( m  x.  y
)  =  ( y  x.  m ) )
5 mulass 7775 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( m  x.  y
)  x.  x )  =  ( m  x.  ( y  x.  x
) ) )
65adantl 275 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC  /\  x  e.  CC ) )  -> 
( ( m  x.  y )  x.  x
)  =  ( m  x.  ( y  x.  x ) ) )
7 prodmolem3.5 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
87simpld 111 . . . 4  |-  ( ph  ->  M  e.  NN )
9 nnuz 9385 . . . 4  |-  NN  =  ( ZZ>= `  1 )
108, 9eleqtrdi 2233 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
11 prodmolem3.6 . . . . . 6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
12 f1ocnv 5388 . . . . . 6  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  `' f : A -1-1-onto-> ( 1 ... M
) )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  `' f : A -1-1-onto-> (
1 ... M ) )
14 prodmolem3.7 . . . . 5  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
15 f1oco 5398 . . . . 5  |-  ( ( `' f : A -1-1-onto-> (
1 ... M )  /\  K : ( 1 ... N ) -1-1-onto-> A )  ->  ( `' f  o.  K
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
1613, 14, 15syl2anc 409 . . . 4  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
177ancomd 265 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  M  e.  NN ) )
1817, 14, 11nnf1o 11177 . . . . . 6  |-  ( ph  ->  M  =  N )
1918oveq2d 5798 . . . . 5  |-  ( ph  ->  ( 1 ... M
)  =  ( 1 ... N ) )
2019f1oeq2d 5371 . . . 4  |-  ( ph  ->  ( ( `' f  o.  K ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
)  <->  ( `' f  o.  K ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... M
) ) )
2116, 20mpbird 166 . . 3  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
22 prodmodc.3 . . . . 5  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
23 breq1 3940 . . . . . 6  |-  ( j  =  m  ->  (
j  <_  ( `  A
)  <->  m  <_  ( `  A
) ) )
24 fveq2 5429 . . . . . . 7  |-  ( j  =  m  ->  (
f `  j )  =  ( f `  m ) )
2524csbeq1d 3014 . . . . . 6  |-  ( j  =  m  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( f `  m )  /  k ]_ B )
2623, 25ifbieq1d 3499 . . . . 5  |-  ( j  =  m  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( m  <_  ( `  A ) ,  [_ ( f `  m )  /  k ]_ B ,  1 ) )
27 elnnuz 9386 . . . . . . 7  |-  ( m  e.  NN  <->  m  e.  ( ZZ>= `  1 )
)
2827biimpri 132 . . . . . 6  |-  ( m  e.  ( ZZ>= `  1
)  ->  m  e.  NN )
2928adantl 275 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  m  e.  NN )
30 f1of 5375 . . . . . . . . . 10  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  f :
( 1 ... M
) --> A )
3111, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  f : ( 1 ... M ) --> A )
3231ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
f : ( 1 ... M ) --> A )
33 1zzd 9105 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
1  e.  ZZ )
348nnzd 9196 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
3534ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  M  e.  ZZ )
36 eluzelz 9359 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  1
)  ->  m  e.  ZZ )
3736ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ZZ )
3833, 35, 373jca 1162 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1  e.  ZZ  /\  M  e.  ZZ  /\  m  e.  ZZ )
)
39 eluzle 9362 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  1
)  ->  1  <_  m )
4039ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
1  <_  m )
41 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  <_  ( `  A )
)
428nnnn0d 9054 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  NN0 )
43 hashfz1 10561 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( `  (
1 ... M ) )  =  M )
4442, 43syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  M )
45 1zzd 9105 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
4645, 34fzfigd 10235 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
4746, 11fihasheqf1od 10568 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  ( `  A )
)
4844, 47eqtr3d 2175 . . . . . . . . . . . 12  |-  ( ph  ->  M  =  ( `  A
) )
4948ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  M  =  ( `  A
) )
5041, 49breqtrrd 3964 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  <_  M )
5140, 50jca 304 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1  <_  m  /\  m  <_  M ) )
52 elfz2 9828 . . . . . . . . 9  |-  ( m  e.  ( 1 ... M )  <->  ( (
1  e.  ZZ  /\  M  e.  ZZ  /\  m  e.  ZZ )  /\  (
1  <_  m  /\  m  <_  M ) ) )
5338, 51, 52sylanbrc 414 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ( 1 ... M ) )
5432, 53ffvelrnd 5564 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( f `  m
)  e.  A )
55 prodmo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5655ralrimiva 2508 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
5756ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  A. k  e.  A  B  e.  CC )
58 nfcsb1v 3040 . . . . . . . . 9  |-  F/_ k [_ ( f `  m
)  /  k ]_ B
5958nfel1 2293 . . . . . . . 8  |-  F/ k
[_ ( f `  m )  /  k ]_ B  e.  CC
60 csbeq1a 3016 . . . . . . . . 9  |-  ( k  =  ( f `  m )  ->  B  =  [_ ( f `  m )  /  k ]_ B )
6160eleq1d 2209 . . . . . . . 8  |-  ( k  =  ( f `  m )  ->  ( B  e.  CC  <->  [_ ( f `
 m )  / 
k ]_ B  e.  CC ) )
6259, 61rspc 2787 . . . . . . 7  |-  ( ( f `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
)
6354, 57, 62sylc 62 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
64 1cnd 7806 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  -.  m  <_  ( `  A )
)  ->  1  e.  CC )
6529nnzd 9196 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  m  e.  ZZ )
6648, 34eqeltrrd 2218 . . . . . . . 8  |-  ( ph  ->  ( `  A )  e.  ZZ )
6766adantr 274 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  ZZ )
68 zdcle 9151 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  m  <_  ( `  A
) )
6965, 67, 68syl2anc 409 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  -> DECID  m  <_  ( `  A
) )
7063, 64, 69ifcldadc 3506 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  if (
m  <_  ( `  A
) ,  [_ (
f `  m )  /  k ]_ B ,  1 )  e.  CC )
7122, 26, 29, 70fvmptd3 5522 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( G `  m )  =  if ( m  <_  ( `  A ) ,  [_ ( f `  m
)  /  k ]_ B ,  1 ) )
7271, 70eqeltrd 2217 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( G `  m )  e.  CC )
73 prodmodclem3.4 . . . . 5  |-  H  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 ) )
74 fveq2 5429 . . . . . . 7  |-  ( j  =  m  ->  ( K `  j )  =  ( K `  m ) )
7574csbeq1d 3014 . . . . . 6  |-  ( j  =  m  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  m )  /  k ]_ B )
7623, 75ifbieq1d 3499 . . . . 5  |-  ( j  =  m  ->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 )  =  if ( m  <_ 
( `  A ) , 
[_ ( K `  m )  /  k ]_ B ,  1 ) )
7714ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  K : ( 1 ... N ) -1-1-onto-> A )
78 f1of 5375 . . . . . . . . 9  |-  ( K : ( 1 ... N ) -1-1-onto-> A  ->  K :
( 1 ... N
) --> A )
7977, 78syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  K : ( 1 ... N ) --> A )
8019ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1 ... M
)  =  ( 1 ... N ) )
8153, 80eleqtrd 2219 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ( 1 ... N ) )
8279, 81ffvelrnd 5564 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( K `  m
)  e.  A )
83 nfcsb1v 3040 . . . . . . . . 9  |-  F/_ k [_ ( K `  m
)  /  k ]_ B
8483nfel1 2293 . . . . . . . 8  |-  F/ k
[_ ( K `  m )  /  k ]_ B  e.  CC
85 csbeq1a 3016 . . . . . . . . 9  |-  ( k  =  ( K `  m )  ->  B  =  [_ ( K `  m )  /  k ]_ B )
8685eleq1d 2209 . . . . . . . 8  |-  ( k  =  ( K `  m )  ->  ( B  e.  CC  <->  [_ ( K `
 m )  / 
k ]_ B  e.  CC ) )
8784, 86rspc 2787 . . . . . . 7  |-  ( ( K `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( K `  m
)  /  k ]_ B  e.  CC )
)
8882, 57, 87sylc 62 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  [_ ( K `  m
)  /  k ]_ B  e.  CC )
8988, 64, 69ifcldadc 3506 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  if (
m  <_  ( `  A
) ,  [_ ( K `  m )  /  k ]_ B ,  1 )  e.  CC )
9073, 76, 29, 89fvmptd3 5522 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( H `  m )  =  if ( m  <_  ( `  A ) ,  [_ ( K `  m )  /  k ]_ B ,  1 ) )
9190, 89eqeltrd 2217 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( H `  m )  e.  CC )
9219f1oeq2d 5371 . . . . . . . . . 10  |-  ( ph  ->  ( K : ( 1 ... M ) -1-1-onto-> A  <-> 
K : ( 1 ... N ) -1-1-onto-> A ) )
9314, 92mpbird 166 . . . . . . . . 9  |-  ( ph  ->  K : ( 1 ... M ) -1-1-onto-> A )
94 f1of 5375 . . . . . . . . 9  |-  ( K : ( 1 ... M ) -1-1-onto-> A  ->  K :
( 1 ... M
) --> A )
9593, 94syl 14 . . . . . . . 8  |-  ( ph  ->  K : ( 1 ... M ) --> A )
96 fvco3 5500 . . . . . . . 8  |-  ( ( K : ( 1 ... M ) --> A  /\  i  e.  ( 1 ... M ) )  ->  ( ( `' f  o.  K
) `  i )  =  ( `' f `
 ( K `  i ) ) )
9795, 96sylan 281 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  =  ( `' f `  ( K `
 i ) ) )
9897fveq2d 5433 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( f `
 ( `' f `
 ( K `  i ) ) ) )
9911adantr 274 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  f : ( 1 ... M ) -1-1-onto-> A )
10095ffvelrnda 5563 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( K `  i )  e.  A )
101 f1ocnvfv2 5687 . . . . . . 7  |-  ( ( f : ( 1 ... M ) -1-1-onto-> A  /\  ( K `  i )  e.  A )  -> 
( f `  ( `' f `  ( K `  i )
) )  =  ( K `  i ) )
10299, 100, 101syl2anc 409 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( `' f `  ( K `  i ) ) )  =  ( K `  i ) )
10398, 102eqtrd 2173 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( K `
 i ) )
104103csbeq1d 3014 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  =  [_ ( K `
 i )  / 
k ]_ B )
105 breq1 3940 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( j  <_  ( `  A )  <->  ( ( `' f  o.  K
) `  i )  <_  ( `  A )
) )
106 fveq2 5429 . . . . . . . 8  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( f `  j
)  =  ( f `
 ( ( `' f  o.  K ) `
 i ) ) )
107106csbeq1d 3014 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  [_ ( f `  j
)  /  k ]_ B  =  [_ ( f `
 ( ( `' f  o.  K ) `
 i ) )  /  k ]_ B
)
108105, 107ifbieq1d 3499 . . . . . 6  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( ( ( `' f  o.  K ) `  i
)  <_  ( `  A
) ,  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B ,  1 ) )
109 f1of 5375 . . . . . . . . 9  |-  ( ( `' f  o.  K
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M )  -> 
( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
11021, 109syl 14 . . . . . . . 8  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
111110ffvelrnda 5563 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  ( 1 ... M ) )
112 elfznn 9865 . . . . . . 7  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  e.  NN )
113111, 112syl 14 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  NN )
114 elfzle2 9839 . . . . . . . . . 10  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  <_  M
)
115111, 114syl 14 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  <_  M )
11648adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  M  =  ( `  A )
)
117115, 116breqtrd 3962 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  <_  ( `  A
) )
118117iftrued 3486 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( ( ( `' f  o.  K ) `
 i )  <_ 
( `  A ) , 
[_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ,  1 )  =  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B )
11956adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
120 nfcsb1v 3040 . . . . . . . . . . 11  |-  F/_ k [_ ( K `  i
)  /  k ]_ B
121120nfel1 2293 . . . . . . . . . 10  |-  F/ k
[_ ( K `  i )  /  k ]_ B  e.  CC
122 csbeq1a 3016 . . . . . . . . . . 11  |-  ( k  =  ( K `  i )  ->  B  =  [_ ( K `  i )  /  k ]_ B )
123122eleq1d 2209 . . . . . . . . . 10  |-  ( k  =  ( K `  i )  ->  ( B  e.  CC  <->  [_ ( K `
 i )  / 
k ]_ B  e.  CC ) )
124121, 123rspc 2787 . . . . . . . . 9  |-  ( ( K `  i )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( K `  i
)  /  k ]_ B  e.  CC )
)
125100, 119, 124sylc 62 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ ( K `  i )  /  k ]_ B  e.  CC )
126104, 125eqeltrd 2217 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  e.  CC )
127118, 126eqeltrd 2217 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( ( ( `' f  o.  K ) `
 i )  <_ 
( `  A ) , 
[_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ,  1 )  e.  CC )
12822, 108, 113, 127fvmptd3 5522 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  if ( ( ( `' f  o.  K ) `  i )  <_  ( `  A ) ,  [_ ( f `  (
( `' f  o.  K ) `  i
) )  /  k ]_ B ,  1 ) )
129128, 118eqtrd 2173 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B )
130 breq1 3940 . . . . . . 7  |-  ( j  =  i  ->  (
j  <_  ( `  A
)  <->  i  <_  ( `  A ) ) )
131 fveq2 5429 . . . . . . . 8  |-  ( j  =  i  ->  ( K `  j )  =  ( K `  i ) )
132131csbeq1d 3014 . . . . . . 7  |-  ( j  =  i  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  i )  /  k ]_ B )
133130, 132ifbieq1d 3499 . . . . . 6  |-  ( j  =  i  ->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 )  =  if ( i  <_ 
( `  A ) , 
[_ ( K `  i )  /  k ]_ B ,  1 ) )
134 elfznn 9865 . . . . . . 7  |-  ( i  e.  ( 1 ... M )  ->  i  e.  NN )
135134adantl 275 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  e.  NN )
136 elfzle2 9839 . . . . . . . . . 10  |-  ( i  e.  ( 1 ... M )  ->  i  <_  M )
137136adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  <_  M )
138137, 116breqtrd 3962 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  <_  ( `  A )
)
139138iftrued 3486 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( i  <_  ( `  A ) ,  [_ ( K `  i )  /  k ]_ B ,  1 )  = 
[_ ( K `  i )  /  k ]_ B )
140139, 125eqeltrd 2217 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( i  <_  ( `  A ) ,  [_ ( K `  i )  /  k ]_ B ,  1 )  e.  CC )
14173, 133, 135, 140fvmptd3 5522 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  if ( i  <_ 
( `  A ) , 
[_ ( K `  i )  /  k ]_ B ,  1 ) )
142141, 139eqtrd 2173 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  [_ ( K `  i )  /  k ]_ B )
143104, 129, 1423eqtr4rd 2184 . . 3  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  ( G `  ( ( `' f  o.  K ) `  i ) ) )
1442, 4, 6, 10, 21, 72, 91, 143seq3f1o 10308 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  G ) `
 M ) )
14518fveq2d 5433 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
146144, 145eqtr3d 2175 1  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 820    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   [_csb 3007   ifcif 3479   class class class wbr 3937    |-> cmpt 3997   `'ccnv 4546    o. ccom 4551   -->wf 5127   -1-1-onto->wf1o 5130   ` cfv 5131  (class class class)co 5782   CCcc 7642   1c1 7645    x. cmul 7649    <_ cle 7825   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821    seqcseq 10249  ♯chash 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-ihash 10554
This theorem is referenced by:  prodmodclem2a  11377  prodmodc  11379
  Copyright terms: Public domain W3C validator