ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem3 Unicode version

Theorem prodmodclem3 11757
Description: Lemma for prodmodc 11760. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmodc.3  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
prodmodclem3.4  |-  H  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 ) )
prodmolem3.5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
prodmolem3.6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
prodmolem3.7  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
Assertion
Ref Expression
prodmodclem3  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Distinct variable groups:    A, j, k    B, j    j, G    j, K, k    j, M    f,
j, k    ph, k
Allowed substitution hints:    ph( f, j)    A( f)    B( f, k)    F( f, j, k)    G( f, k)    H( f, j, k)    K( f)    M( f, k)    N( f, j, k)

Proof of Theorem prodmodclem3
Dummy variables  i  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 8023 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC )  ->  ( m  x.  y
)  e.  CC )
21adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC ) )  -> 
( m  x.  y
)  e.  CC )
3 mulcom 8025 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC )  ->  ( m  x.  y
)  =  ( y  x.  m ) )
43adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC ) )  -> 
( m  x.  y
)  =  ( y  x.  m ) )
5 mulass 8027 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( m  x.  y
)  x.  x )  =  ( m  x.  ( y  x.  x
) ) )
65adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC  /\  x  e.  CC ) )  -> 
( ( m  x.  y )  x.  x
)  =  ( m  x.  ( y  x.  x ) ) )
7 prodmolem3.5 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
87simpld 112 . . . 4  |-  ( ph  ->  M  e.  NN )
9 nnuz 9654 . . . 4  |-  NN  =  ( ZZ>= `  1 )
108, 9eleqtrdi 2289 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
11 prodmolem3.6 . . . . . 6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
12 f1ocnv 5520 . . . . . 6  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  `' f : A -1-1-onto-> ( 1 ... M
) )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  `' f : A -1-1-onto-> (
1 ... M ) )
14 prodmolem3.7 . . . . 5  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
15 f1oco 5530 . . . . 5  |-  ( ( `' f : A -1-1-onto-> (
1 ... M )  /\  K : ( 1 ... N ) -1-1-onto-> A )  ->  ( `' f  o.  K
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
1613, 14, 15syl2anc 411 . . . 4  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
177ancomd 267 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  M  e.  NN ) )
1817, 14, 11nnf1o 11558 . . . . . 6  |-  ( ph  ->  M  =  N )
1918oveq2d 5941 . . . . 5  |-  ( ph  ->  ( 1 ... M
)  =  ( 1 ... N ) )
2019f1oeq2d 5503 . . . 4  |-  ( ph  ->  ( ( `' f  o.  K ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
)  <->  ( `' f  o.  K ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... M
) ) )
2116, 20mpbird 167 . . 3  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
22 prodmodc.3 . . . . 5  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
23 breq1 4037 . . . . . 6  |-  ( j  =  m  ->  (
j  <_  ( `  A
)  <->  m  <_  ( `  A
) ) )
24 fveq2 5561 . . . . . . 7  |-  ( j  =  m  ->  (
f `  j )  =  ( f `  m ) )
2524csbeq1d 3091 . . . . . 6  |-  ( j  =  m  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( f `  m )  /  k ]_ B )
2623, 25ifbieq1d 3584 . . . . 5  |-  ( j  =  m  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( m  <_  ( `  A ) ,  [_ ( f `  m )  /  k ]_ B ,  1 ) )
27 elnnuz 9655 . . . . . . 7  |-  ( m  e.  NN  <->  m  e.  ( ZZ>= `  1 )
)
2827biimpri 133 . . . . . 6  |-  ( m  e.  ( ZZ>= `  1
)  ->  m  e.  NN )
2928adantl 277 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  m  e.  NN )
30 f1of 5507 . . . . . . . . . 10  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  f :
( 1 ... M
) --> A )
3111, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  f : ( 1 ... M ) --> A )
3231ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
f : ( 1 ... M ) --> A )
33 1zzd 9370 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
1  e.  ZZ )
348nnzd 9464 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
3534ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  M  e.  ZZ )
36 eluzelz 9627 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  1
)  ->  m  e.  ZZ )
3736ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ZZ )
3833, 35, 373jca 1179 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1  e.  ZZ  /\  M  e.  ZZ  /\  m  e.  ZZ )
)
39 eluzle 9630 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  1
)  ->  1  <_  m )
4039ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
1  <_  m )
41 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  <_  ( `  A )
)
428nnnn0d 9319 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  NN0 )
43 hashfz1 10892 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( `  (
1 ... M ) )  =  M )
4442, 43syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  M )
45 1zzd 9370 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
4645, 34fzfigd 10540 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
4746, 11fihasheqf1od 10898 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  ( `  A )
)
4844, 47eqtr3d 2231 . . . . . . . . . . . 12  |-  ( ph  ->  M  =  ( `  A
) )
4948ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  M  =  ( `  A
) )
5041, 49breqtrrd 4062 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  <_  M )
5140, 50jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1  <_  m  /\  m  <_  M ) )
52 elfz2 10107 . . . . . . . . 9  |-  ( m  e.  ( 1 ... M )  <->  ( (
1  e.  ZZ  /\  M  e.  ZZ  /\  m  e.  ZZ )  /\  (
1  <_  m  /\  m  <_  M ) ) )
5338, 51, 52sylanbrc 417 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ( 1 ... M ) )
5432, 53ffvelcdmd 5701 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( f `  m
)  e.  A )
55 prodmo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5655ralrimiva 2570 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
5756ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  A. k  e.  A  B  e.  CC )
58 nfcsb1v 3117 . . . . . . . . 9  |-  F/_ k [_ ( f `  m
)  /  k ]_ B
5958nfel1 2350 . . . . . . . 8  |-  F/ k
[_ ( f `  m )  /  k ]_ B  e.  CC
60 csbeq1a 3093 . . . . . . . . 9  |-  ( k  =  ( f `  m )  ->  B  =  [_ ( f `  m )  /  k ]_ B )
6160eleq1d 2265 . . . . . . . 8  |-  ( k  =  ( f `  m )  ->  ( B  e.  CC  <->  [_ ( f `
 m )  / 
k ]_ B  e.  CC ) )
6259, 61rspc 2862 . . . . . . 7  |-  ( ( f `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
)
6354, 57, 62sylc 62 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
64 1cnd 8059 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  -.  m  <_  ( `  A )
)  ->  1  e.  CC )
6529nnzd 9464 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  m  e.  ZZ )
6648, 34eqeltrrd 2274 . . . . . . . 8  |-  ( ph  ->  ( `  A )  e.  ZZ )
6766adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  ZZ )
68 zdcle 9419 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  m  <_  ( `  A
) )
6965, 67, 68syl2anc 411 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  -> DECID  m  <_  ( `  A
) )
7063, 64, 69ifcldadc 3591 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  if (
m  <_  ( `  A
) ,  [_ (
f `  m )  /  k ]_ B ,  1 )  e.  CC )
7122, 26, 29, 70fvmptd3 5658 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( G `  m )  =  if ( m  <_  ( `  A ) ,  [_ ( f `  m
)  /  k ]_ B ,  1 ) )
7271, 70eqeltrd 2273 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( G `  m )  e.  CC )
73 prodmodclem3.4 . . . . 5  |-  H  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 ) )
74 fveq2 5561 . . . . . . 7  |-  ( j  =  m  ->  ( K `  j )  =  ( K `  m ) )
7574csbeq1d 3091 . . . . . 6  |-  ( j  =  m  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  m )  /  k ]_ B )
7623, 75ifbieq1d 3584 . . . . 5  |-  ( j  =  m  ->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 )  =  if ( m  <_ 
( `  A ) , 
[_ ( K `  m )  /  k ]_ B ,  1 ) )
7714ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  K : ( 1 ... N ) -1-1-onto-> A )
78 f1of 5507 . . . . . . . . 9  |-  ( K : ( 1 ... N ) -1-1-onto-> A  ->  K :
( 1 ... N
) --> A )
7977, 78syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  K : ( 1 ... N ) --> A )
8019ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1 ... M
)  =  ( 1 ... N ) )
8153, 80eleqtrd 2275 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ( 1 ... N ) )
8279, 81ffvelcdmd 5701 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( K `  m
)  e.  A )
83 nfcsb1v 3117 . . . . . . . . 9  |-  F/_ k [_ ( K `  m
)  /  k ]_ B
8483nfel1 2350 . . . . . . . 8  |-  F/ k
[_ ( K `  m )  /  k ]_ B  e.  CC
85 csbeq1a 3093 . . . . . . . . 9  |-  ( k  =  ( K `  m )  ->  B  =  [_ ( K `  m )  /  k ]_ B )
8685eleq1d 2265 . . . . . . . 8  |-  ( k  =  ( K `  m )  ->  ( B  e.  CC  <->  [_ ( K `
 m )  / 
k ]_ B  e.  CC ) )
8784, 86rspc 2862 . . . . . . 7  |-  ( ( K `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( K `  m
)  /  k ]_ B  e.  CC )
)
8882, 57, 87sylc 62 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  [_ ( K `  m
)  /  k ]_ B  e.  CC )
8988, 64, 69ifcldadc 3591 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  if (
m  <_  ( `  A
) ,  [_ ( K `  m )  /  k ]_ B ,  1 )  e.  CC )
9073, 76, 29, 89fvmptd3 5658 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( H `  m )  =  if ( m  <_  ( `  A ) ,  [_ ( K `  m )  /  k ]_ B ,  1 ) )
9190, 89eqeltrd 2273 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( H `  m )  e.  CC )
9219f1oeq2d 5503 . . . . . . . . . 10  |-  ( ph  ->  ( K : ( 1 ... M ) -1-1-onto-> A  <-> 
K : ( 1 ... N ) -1-1-onto-> A ) )
9314, 92mpbird 167 . . . . . . . . 9  |-  ( ph  ->  K : ( 1 ... M ) -1-1-onto-> A )
94 f1of 5507 . . . . . . . . 9  |-  ( K : ( 1 ... M ) -1-1-onto-> A  ->  K :
( 1 ... M
) --> A )
9593, 94syl 14 . . . . . . . 8  |-  ( ph  ->  K : ( 1 ... M ) --> A )
96 fvco3 5635 . . . . . . . 8  |-  ( ( K : ( 1 ... M ) --> A  /\  i  e.  ( 1 ... M ) )  ->  ( ( `' f  o.  K
) `  i )  =  ( `' f `
 ( K `  i ) ) )
9795, 96sylan 283 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  =  ( `' f `  ( K `
 i ) ) )
9897fveq2d 5565 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( f `
 ( `' f `
 ( K `  i ) ) ) )
9911adantr 276 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  f : ( 1 ... M ) -1-1-onto-> A )
10095ffvelcdmda 5700 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( K `  i )  e.  A )
101 f1ocnvfv2 5828 . . . . . . 7  |-  ( ( f : ( 1 ... M ) -1-1-onto-> A  /\  ( K `  i )  e.  A )  -> 
( f `  ( `' f `  ( K `  i )
) )  =  ( K `  i ) )
10299, 100, 101syl2anc 411 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( `' f `  ( K `  i ) ) )  =  ( K `  i ) )
10398, 102eqtrd 2229 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( K `
 i ) )
104103csbeq1d 3091 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  =  [_ ( K `
 i )  / 
k ]_ B )
105 breq1 4037 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( j  <_  ( `  A )  <->  ( ( `' f  o.  K
) `  i )  <_  ( `  A )
) )
106 fveq2 5561 . . . . . . . 8  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( f `  j
)  =  ( f `
 ( ( `' f  o.  K ) `
 i ) ) )
107106csbeq1d 3091 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  [_ ( f `  j
)  /  k ]_ B  =  [_ ( f `
 ( ( `' f  o.  K ) `
 i ) )  /  k ]_ B
)
108105, 107ifbieq1d 3584 . . . . . 6  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( ( ( `' f  o.  K ) `  i
)  <_  ( `  A
) ,  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B ,  1 ) )
109 f1of 5507 . . . . . . . . 9  |-  ( ( `' f  o.  K
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M )  -> 
( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
11021, 109syl 14 . . . . . . . 8  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
111110ffvelcdmda 5700 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  ( 1 ... M ) )
112 elfznn 10146 . . . . . . 7  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  e.  NN )
113111, 112syl 14 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  NN )
114 elfzle2 10120 . . . . . . . . . 10  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  <_  M
)
115111, 114syl 14 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  <_  M )
11648adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  M  =  ( `  A )
)
117115, 116breqtrd 4060 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  <_  ( `  A
) )
118117iftrued 3569 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( ( ( `' f  o.  K ) `
 i )  <_ 
( `  A ) , 
[_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ,  1 )  =  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B )
11956adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
120 nfcsb1v 3117 . . . . . . . . . . 11  |-  F/_ k [_ ( K `  i
)  /  k ]_ B
121120nfel1 2350 . . . . . . . . . 10  |-  F/ k
[_ ( K `  i )  /  k ]_ B  e.  CC
122 csbeq1a 3093 . . . . . . . . . . 11  |-  ( k  =  ( K `  i )  ->  B  =  [_ ( K `  i )  /  k ]_ B )
123122eleq1d 2265 . . . . . . . . . 10  |-  ( k  =  ( K `  i )  ->  ( B  e.  CC  <->  [_ ( K `
 i )  / 
k ]_ B  e.  CC ) )
124121, 123rspc 2862 . . . . . . . . 9  |-  ( ( K `  i )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( K `  i
)  /  k ]_ B  e.  CC )
)
125100, 119, 124sylc 62 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ ( K `  i )  /  k ]_ B  e.  CC )
126104, 125eqeltrd 2273 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  e.  CC )
127118, 126eqeltrd 2273 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( ( ( `' f  o.  K ) `
 i )  <_ 
( `  A ) , 
[_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ,  1 )  e.  CC )
12822, 108, 113, 127fvmptd3 5658 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  if ( ( ( `' f  o.  K ) `  i )  <_  ( `  A ) ,  [_ ( f `  (
( `' f  o.  K ) `  i
) )  /  k ]_ B ,  1 ) )
129128, 118eqtrd 2229 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B )
130 breq1 4037 . . . . . . 7  |-  ( j  =  i  ->  (
j  <_  ( `  A
)  <->  i  <_  ( `  A ) ) )
131 fveq2 5561 . . . . . . . 8  |-  ( j  =  i  ->  ( K `  j )  =  ( K `  i ) )
132131csbeq1d 3091 . . . . . . 7  |-  ( j  =  i  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  i )  /  k ]_ B )
133130, 132ifbieq1d 3584 . . . . . 6  |-  ( j  =  i  ->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 )  =  if ( i  <_ 
( `  A ) , 
[_ ( K `  i )  /  k ]_ B ,  1 ) )
134 elfznn 10146 . . . . . . 7  |-  ( i  e.  ( 1 ... M )  ->  i  e.  NN )
135134adantl 277 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  e.  NN )
136 elfzle2 10120 . . . . . . . . . 10  |-  ( i  e.  ( 1 ... M )  ->  i  <_  M )
137136adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  <_  M )
138137, 116breqtrd 4060 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  <_  ( `  A )
)
139138iftrued 3569 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( i  <_  ( `  A ) ,  [_ ( K `  i )  /  k ]_ B ,  1 )  = 
[_ ( K `  i )  /  k ]_ B )
140139, 125eqeltrd 2273 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( i  <_  ( `  A ) ,  [_ ( K `  i )  /  k ]_ B ,  1 )  e.  CC )
14173, 133, 135, 140fvmptd3 5658 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  if ( i  <_ 
( `  A ) , 
[_ ( K `  i )  /  k ]_ B ,  1 ) )
142141, 139eqtrd 2229 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  [_ ( K `  i )  /  k ]_ B )
143104, 129, 1423eqtr4rd 2240 . . 3  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  ( G `  ( ( `' f  o.  K ) `  i ) ) )
1442, 4, 6, 10, 21, 72, 91, 143seq3f1o 10626 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  G ) `
 M ) )
14518fveq2d 5565 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
146144, 145eqtr3d 2231 1  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   [_csb 3084   ifcif 3562   class class class wbr 4034    |-> cmpt 4095   `'ccnv 4663    o. ccom 4668   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925   CCcc 7894   1c1 7897    x. cmul 7901    <_ cle 8079   NNcn 9007   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556  ♯chash 10884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-ihash 10885
This theorem is referenced by:  prodmodclem2a  11758  prodmodc  11760
  Copyright terms: Public domain W3C validator