ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem3 Unicode version

Theorem prodmodclem3 12086
Description: Lemma for prodmodc 12089. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmodc.3  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
prodmodclem3.4  |-  H  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 ) )
prodmolem3.5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
prodmolem3.6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
prodmolem3.7  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
Assertion
Ref Expression
prodmodclem3  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Distinct variable groups:    A, j, k    B, j    j, G    j, K, k    j, M    f,
j, k    ph, k
Allowed substitution hints:    ph( f, j)    A( f)    B( f, k)    F( f, j, k)    G( f, k)    H( f, j, k)    K( f)    M( f, k)    N( f, j, k)

Proof of Theorem prodmodclem3
Dummy variables  i  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 8126 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC )  ->  ( m  x.  y
)  e.  CC )
21adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC ) )  -> 
( m  x.  y
)  e.  CC )
3 mulcom 8128 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC )  ->  ( m  x.  y
)  =  ( y  x.  m ) )
43adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC ) )  -> 
( m  x.  y
)  =  ( y  x.  m ) )
5 mulass 8130 . . . 4  |-  ( ( m  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( m  x.  y
)  x.  x )  =  ( m  x.  ( y  x.  x
) ) )
65adantl 277 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  y  e.  CC  /\  x  e.  CC ) )  -> 
( ( m  x.  y )  x.  x
)  =  ( m  x.  ( y  x.  x ) ) )
7 prodmolem3.5 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
87simpld 112 . . . 4  |-  ( ph  ->  M  e.  NN )
9 nnuz 9758 . . . 4  |-  NN  =  ( ZZ>= `  1 )
108, 9eleqtrdi 2322 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
11 prodmolem3.6 . . . . . 6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
12 f1ocnv 5585 . . . . . 6  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  `' f : A -1-1-onto-> ( 1 ... M
) )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  `' f : A -1-1-onto-> (
1 ... M ) )
14 prodmolem3.7 . . . . 5  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
15 f1oco 5595 . . . . 5  |-  ( ( `' f : A -1-1-onto-> (
1 ... M )  /\  K : ( 1 ... N ) -1-1-onto-> A )  ->  ( `' f  o.  K
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
1613, 14, 15syl2anc 411 . . . 4  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
177ancomd 267 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  M  e.  NN ) )
1817, 14, 11nnf1o 11887 . . . . . 6  |-  ( ph  ->  M  =  N )
1918oveq2d 6017 . . . . 5  |-  ( ph  ->  ( 1 ... M
)  =  ( 1 ... N ) )
2019f1oeq2d 5568 . . . 4  |-  ( ph  ->  ( ( `' f  o.  K ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
)  <->  ( `' f  o.  K ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... M
) ) )
2116, 20mpbird 167 . . 3  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
22 prodmodc.3 . . . . 5  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
23 breq1 4086 . . . . . 6  |-  ( j  =  m  ->  (
j  <_  ( `  A
)  <->  m  <_  ( `  A
) ) )
24 fveq2 5627 . . . . . . 7  |-  ( j  =  m  ->  (
f `  j )  =  ( f `  m ) )
2524csbeq1d 3131 . . . . . 6  |-  ( j  =  m  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( f `  m )  /  k ]_ B )
2623, 25ifbieq1d 3625 . . . . 5  |-  ( j  =  m  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( m  <_  ( `  A ) ,  [_ ( f `  m )  /  k ]_ B ,  1 ) )
27 elnnuz 9759 . . . . . . 7  |-  ( m  e.  NN  <->  m  e.  ( ZZ>= `  1 )
)
2827biimpri 133 . . . . . 6  |-  ( m  e.  ( ZZ>= `  1
)  ->  m  e.  NN )
2928adantl 277 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  m  e.  NN )
30 f1of 5572 . . . . . . . . . 10  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  f :
( 1 ... M
) --> A )
3111, 30syl 14 . . . . . . . . 9  |-  ( ph  ->  f : ( 1 ... M ) --> A )
3231ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
f : ( 1 ... M ) --> A )
33 1zzd 9473 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
1  e.  ZZ )
348nnzd 9568 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
3534ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  M  e.  ZZ )
36 eluzelz 9731 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  1
)  ->  m  e.  ZZ )
3736ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ZZ )
3833, 35, 373jca 1201 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1  e.  ZZ  /\  M  e.  ZZ  /\  m  e.  ZZ )
)
39 eluzle 9734 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  1
)  ->  1  <_  m )
4039ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
1  <_  m )
41 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  <_  ( `  A )
)
428nnnn0d 9422 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  NN0 )
43 hashfz1 11005 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( `  (
1 ... M ) )  =  M )
4442, 43syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  M )
45 1zzd 9473 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
4645, 34fzfigd 10653 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
4746, 11fihasheqf1od 11011 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  ( `  A )
)
4844, 47eqtr3d 2264 . . . . . . . . . . . 12  |-  ( ph  ->  M  =  ( `  A
) )
4948ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  M  =  ( `  A
) )
5041, 49breqtrrd 4111 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  <_  M )
5140, 50jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1  <_  m  /\  m  <_  M ) )
52 elfz2 10211 . . . . . . . . 9  |-  ( m  e.  ( 1 ... M )  <->  ( (
1  e.  ZZ  /\  M  e.  ZZ  /\  m  e.  ZZ )  /\  (
1  <_  m  /\  m  <_  M ) ) )
5338, 51, 52sylanbrc 417 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ( 1 ... M ) )
5432, 53ffvelcdmd 5771 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( f `  m
)  e.  A )
55 prodmo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5655ralrimiva 2603 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
5756ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  A. k  e.  A  B  e.  CC )
58 nfcsb1v 3157 . . . . . . . . 9  |-  F/_ k [_ ( f `  m
)  /  k ]_ B
5958nfel1 2383 . . . . . . . 8  |-  F/ k
[_ ( f `  m )  /  k ]_ B  e.  CC
60 csbeq1a 3133 . . . . . . . . 9  |-  ( k  =  ( f `  m )  ->  B  =  [_ ( f `  m )  /  k ]_ B )
6160eleq1d 2298 . . . . . . . 8  |-  ( k  =  ( f `  m )  ->  ( B  e.  CC  <->  [_ ( f `
 m )  / 
k ]_ B  e.  CC ) )
6259, 61rspc 2901 . . . . . . 7  |-  ( ( f `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
)
6354, 57, 62sylc 62 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
64 1cnd 8162 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  -.  m  <_  ( `  A )
)  ->  1  e.  CC )
6529nnzd 9568 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  m  e.  ZZ )
6648, 34eqeltrrd 2307 . . . . . . . 8  |-  ( ph  ->  ( `  A )  e.  ZZ )
6766adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  ZZ )
68 zdcle 9523 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  m  <_  ( `  A
) )
6965, 67, 68syl2anc 411 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  -> DECID  m  <_  ( `  A
) )
7063, 64, 69ifcldadc 3632 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  if (
m  <_  ( `  A
) ,  [_ (
f `  m )  /  k ]_ B ,  1 )  e.  CC )
7122, 26, 29, 70fvmptd3 5728 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( G `  m )  =  if ( m  <_  ( `  A ) ,  [_ ( f `  m
)  /  k ]_ B ,  1 ) )
7271, 70eqeltrd 2306 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( G `  m )  e.  CC )
73 prodmodclem3.4 . . . . 5  |-  H  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 ) )
74 fveq2 5627 . . . . . . 7  |-  ( j  =  m  ->  ( K `  j )  =  ( K `  m ) )
7574csbeq1d 3131 . . . . . 6  |-  ( j  =  m  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  m )  /  k ]_ B )
7623, 75ifbieq1d 3625 . . . . 5  |-  ( j  =  m  ->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 )  =  if ( m  <_ 
( `  A ) , 
[_ ( K `  m )  /  k ]_ B ,  1 ) )
7714ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  K : ( 1 ... N ) -1-1-onto-> A )
78 f1of 5572 . . . . . . . . 9  |-  ( K : ( 1 ... N ) -1-1-onto-> A  ->  K :
( 1 ... N
) --> A )
7977, 78syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  K : ( 1 ... N ) --> A )
8019ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( 1 ... M
)  =  ( 1 ... N ) )
8153, 80eleqtrd 2308 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  m  e.  ( 1 ... N ) )
8279, 81ffvelcdmd 5771 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  -> 
( K `  m
)  e.  A )
83 nfcsb1v 3157 . . . . . . . . 9  |-  F/_ k [_ ( K `  m
)  /  k ]_ B
8483nfel1 2383 . . . . . . . 8  |-  F/ k
[_ ( K `  m )  /  k ]_ B  e.  CC
85 csbeq1a 3133 . . . . . . . . 9  |-  ( k  =  ( K `  m )  ->  B  =  [_ ( K `  m )  /  k ]_ B )
8685eleq1d 2298 . . . . . . . 8  |-  ( k  =  ( K `  m )  ->  ( B  e.  CC  <->  [_ ( K `
 m )  / 
k ]_ B  e.  CC ) )
8784, 86rspc 2901 . . . . . . 7  |-  ( ( K `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( K `  m
)  /  k ]_ B  e.  CC )
)
8882, 57, 87sylc 62 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  1 )
)  /\  m  <_  ( `  A ) )  ->  [_ ( K `  m
)  /  k ]_ B  e.  CC )
8988, 64, 69ifcldadc 3632 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  if (
m  <_  ( `  A
) ,  [_ ( K `  m )  /  k ]_ B ,  1 )  e.  CC )
9073, 76, 29, 89fvmptd3 5728 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( H `  m )  =  if ( m  <_  ( `  A ) ,  [_ ( K `  m )  /  k ]_ B ,  1 ) )
9190, 89eqeltrd 2306 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  1 )
)  ->  ( H `  m )  e.  CC )
9219f1oeq2d 5568 . . . . . . . . . 10  |-  ( ph  ->  ( K : ( 1 ... M ) -1-1-onto-> A  <-> 
K : ( 1 ... N ) -1-1-onto-> A ) )
9314, 92mpbird 167 . . . . . . . . 9  |-  ( ph  ->  K : ( 1 ... M ) -1-1-onto-> A )
94 f1of 5572 . . . . . . . . 9  |-  ( K : ( 1 ... M ) -1-1-onto-> A  ->  K :
( 1 ... M
) --> A )
9593, 94syl 14 . . . . . . . 8  |-  ( ph  ->  K : ( 1 ... M ) --> A )
96 fvco3 5705 . . . . . . . 8  |-  ( ( K : ( 1 ... M ) --> A  /\  i  e.  ( 1 ... M ) )  ->  ( ( `' f  o.  K
) `  i )  =  ( `' f `
 ( K `  i ) ) )
9795, 96sylan 283 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  =  ( `' f `  ( K `
 i ) ) )
9897fveq2d 5631 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( f `
 ( `' f `
 ( K `  i ) ) ) )
9911adantr 276 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  f : ( 1 ... M ) -1-1-onto-> A )
10095ffvelcdmda 5770 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( K `  i )  e.  A )
101 f1ocnvfv2 5902 . . . . . . 7  |-  ( ( f : ( 1 ... M ) -1-1-onto-> A  /\  ( K `  i )  e.  A )  -> 
( f `  ( `' f `  ( K `  i )
) )  =  ( K `  i ) )
10299, 100, 101syl2anc 411 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( `' f `  ( K `  i ) ) )  =  ( K `  i ) )
10398, 102eqtrd 2262 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( K `
 i ) )
104103csbeq1d 3131 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  =  [_ ( K `
 i )  / 
k ]_ B )
105 breq1 4086 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( j  <_  ( `  A )  <->  ( ( `' f  o.  K
) `  i )  <_  ( `  A )
) )
106 fveq2 5627 . . . . . . . 8  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  -> 
( f `  j
)  =  ( f `
 ( ( `' f  o.  K ) `
 i ) ) )
107106csbeq1d 3131 . . . . . . 7  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  [_ ( f `  j
)  /  k ]_ B  =  [_ ( f `
 ( ( `' f  o.  K ) `
 i ) )  /  k ]_ B
)
108105, 107ifbieq1d 3625 . . . . . 6  |-  ( j  =  ( ( `' f  o.  K ) `
 i )  ->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 )  =  if ( ( ( `' f  o.  K ) `  i
)  <_  ( `  A
) ,  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B ,  1 ) )
109 f1of 5572 . . . . . . . . 9  |-  ( ( `' f  o.  K
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M )  -> 
( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
11021, 109syl 14 . . . . . . . 8  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
111110ffvelcdmda 5770 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  ( 1 ... M ) )
112 elfznn 10250 . . . . . . 7  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  e.  NN )
113111, 112syl 14 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  NN )
114 elfzle2 10224 . . . . . . . . . 10  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  <_  M
)
115111, 114syl 14 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  <_  M )
11648adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  M  =  ( `  A )
)
117115, 116breqtrd 4109 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  <_  ( `  A
) )
118117iftrued 3609 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( ( ( `' f  o.  K ) `
 i )  <_ 
( `  A ) , 
[_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ,  1 )  =  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B )
11956adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
120 nfcsb1v 3157 . . . . . . . . . . 11  |-  F/_ k [_ ( K `  i
)  /  k ]_ B
121120nfel1 2383 . . . . . . . . . 10  |-  F/ k
[_ ( K `  i )  /  k ]_ B  e.  CC
122 csbeq1a 3133 . . . . . . . . . . 11  |-  ( k  =  ( K `  i )  ->  B  =  [_ ( K `  i )  /  k ]_ B )
123122eleq1d 2298 . . . . . . . . . 10  |-  ( k  =  ( K `  i )  ->  ( B  e.  CC  <->  [_ ( K `
 i )  / 
k ]_ B  e.  CC ) )
124121, 123rspc 2901 . . . . . . . . 9  |-  ( ( K `  i )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( K `  i
)  /  k ]_ B  e.  CC )
)
125100, 119, 124sylc 62 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ ( K `  i )  /  k ]_ B  e.  CC )
126104, 125eqeltrd 2306 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B  e.  CC )
127118, 126eqeltrd 2306 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( ( ( `' f  o.  K ) `
 i )  <_ 
( `  A ) , 
[_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ,  1 )  e.  CC )
12822, 108, 113, 127fvmptd3 5728 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  if ( ( ( `' f  o.  K ) `  i )  <_  ( `  A ) ,  [_ ( f `  (
( `' f  o.  K ) `  i
) )  /  k ]_ B ,  1 ) )
129128, 118eqtrd 2262 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B )
130 breq1 4086 . . . . . . 7  |-  ( j  =  i  ->  (
j  <_  ( `  A
)  <->  i  <_  ( `  A ) ) )
131 fveq2 5627 . . . . . . . 8  |-  ( j  =  i  ->  ( K `  j )  =  ( K `  i ) )
132131csbeq1d 3131 . . . . . . 7  |-  ( j  =  i  ->  [_ ( K `  j )  /  k ]_ B  =  [_ ( K `  i )  /  k ]_ B )
133130, 132ifbieq1d 3625 . . . . . 6  |-  ( j  =  i  ->  if ( j  <_  ( `  A ) ,  [_ ( K `  j )  /  k ]_ B ,  1 )  =  if ( i  <_ 
( `  A ) , 
[_ ( K `  i )  /  k ]_ B ,  1 ) )
134 elfznn 10250 . . . . . . 7  |-  ( i  e.  ( 1 ... M )  ->  i  e.  NN )
135134adantl 277 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  e.  NN )
136 elfzle2 10224 . . . . . . . . . 10  |-  ( i  e.  ( 1 ... M )  ->  i  <_  M )
137136adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  <_  M )
138137, 116breqtrd 4109 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  <_  ( `  A )
)
139138iftrued 3609 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( i  <_  ( `  A ) ,  [_ ( K `  i )  /  k ]_ B ,  1 )  = 
[_ ( K `  i )  /  k ]_ B )
140139, 125eqeltrd 2306 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  if ( i  <_  ( `  A ) ,  [_ ( K `  i )  /  k ]_ B ,  1 )  e.  CC )
14173, 133, 135, 140fvmptd3 5728 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  if ( i  <_ 
( `  A ) , 
[_ ( K `  i )  /  k ]_ B ,  1 ) )
142141, 139eqtrd 2262 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  [_ ( K `  i )  /  k ]_ B )
143104, 129, 1423eqtr4rd 2273 . . 3  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  ( G `  ( ( `' f  o.  K ) `  i ) ) )
1442, 4, 6, 10, 21, 72, 91, 143seq3f1o 10739 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  G ) `
 M ) )
14518fveq2d 5631 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  H ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
146144, 145eqtr3d 2264 1  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 M )  =  (  seq 1 (  x.  ,  H ) `
 N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   [_csb 3124   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   `'ccnv 4718    o. ccom 4723   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    x. cmul 8004    <_ cle 8182   NNcn 9110   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669  ♯chash 10997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-ihash 10998
This theorem is referenced by:  prodmodclem2a  12087  prodmodc  12089
  Copyright terms: Public domain W3C validator