ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodseq Unicode version

Theorem fprodseq 11748
Description: The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
Hypotheses
Ref Expression
fprod.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fprod.2  |-  ( ph  ->  M  e.  NN )
fprod.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fprod.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprod.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fprodseq  |-  ( ph  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
Distinct variable groups:    A, k, n    B, n    C, k    k, F, n    k, G, n   
k, M, n    ph, k, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fprodseq
Dummy variables  f  i  j  m  x  p  q  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11716 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
2 nnuz 9637 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 9353 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
4 eqid 2196 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  1 ) )
5 breq1 4036 . . . . . . . 8  |-  ( n  =  p  ->  (
n  <_  M  <->  p  <_  M ) )
6 fveq2 5558 . . . . . . . 8  |-  ( n  =  p  ->  ( G `  n )  =  ( G `  p ) )
75, 6ifbieq1d 3583 . . . . . . 7  |-  ( n  =  p  ->  if ( n  <_  M , 
( G `  n
) ,  1 )  =  if ( p  <_  M ,  ( G `  p ) ,  1 ) )
8 simpr 110 . . . . . . 7  |-  ( (
ph  /\  p  e.  NN )  ->  p  e.  NN )
9 simpll 527 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  M )  ->  ph )
108anim1i 340 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  M )  ->  (
p  e.  NN  /\  p  <_  M ) )
11 fprod.2 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  NN )
1211nnzd 9447 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
13 fznn 10164 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
p  e.  ( 1 ... M )  <->  ( p  e.  NN  /\  p  <_  M ) ) )
1412, 13syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( p  e.  ( 1 ... M )  <-> 
( p  e.  NN  /\  p  <_  M )
) )
1514ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  M )  ->  (
p  e.  ( 1 ... M )  <->  ( p  e.  NN  /\  p  <_  M ) ) )
1610, 15mpbird 167 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  M )  ->  p  e.  ( 1 ... M
) )
176eleq1d 2265 . . . . . . . . . 10  |-  ( n  =  p  ->  (
( G `  n
)  e.  CC  <->  ( G `  p )  e.  CC ) )
18 fprod.1 . . . . . . . . . . . 12  |-  ( k  =  ( F `  n )  ->  B  =  C )
19 fprod.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
20 fprod.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
21 fprod.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
2218, 11, 19, 20, 21fsumgcl 11551 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  e.  CC )
2322adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( 1 ... M
) )  ->  A. n  e.  ( 1 ... M
) ( G `  n )  e.  CC )
24 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( 1 ... M
) )  ->  p  e.  ( 1 ... M
) )
2517, 23, 24rspcdva 2873 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( 1 ... M
) )  ->  ( G `  p )  e.  CC )
269, 16, 25syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  M )  ->  ( G `  p )  e.  CC )
27 1cnd 8042 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  NN )  /\  -.  p  <_  M )  -> 
1  e.  CC )
288nnzd 9447 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  NN )  ->  p  e.  ZZ )
2912adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  NN )  ->  M  e.  ZZ )
30 zdcle 9402 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  M  e.  ZZ )  -> DECID  p  <_  M )
3128, 29, 30syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  p  e.  NN )  -> DECID  p  <_  M )
3226, 27, 31ifcldadc 3590 . . . . . . 7  |-  ( (
ph  /\  p  e.  NN )  ->  if ( p  <_  M , 
( G `  p
) ,  1 )  e.  CC )
334, 7, 8, 32fvmptd3 5655 . . . . . 6  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) `  p
)  =  if ( p  <_  M , 
( G `  p
) ,  1 ) )
3433, 32eqeltrd 2273 . . . . 5  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) `  p
)  e.  CC )
352, 3, 34prodf 11703 . . . 4  |-  ( ph  ->  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) : NN --> CC )
3635, 11ffvelcdmd 5698 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  1 ) ) ) `  M
)  e.  CC )
37 eleq1w 2257 . . . . . . . . . . . . 13  |-  ( i  =  j  ->  (
i  e.  A  <->  j  e.  A ) )
3837dcbid 839 . . . . . . . . . . . 12  |-  ( i  =  j  ->  (DECID  i  e.  A  <-> DECID  j  e.  A )
)
3938cbvralv 2729 . . . . . . . . . . 11  |-  ( A. i  e.  ( ZZ>= `  m )DECID  i  e.  A  <->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
4039anbi2i 457 . . . . . . . . . 10  |-  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )
4140anbi1i 458 . . . . . . . . 9  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) ) )
4241rexbii 2504 . . . . . . . 8  |-  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) ) )
43 nnnn0 9256 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  NN  ->  m  e.  NN0 )
44 hashfz1 10875 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  NN0  ->  ( `  (
1 ... m ) )  =  m )
4543, 44syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  ( `  ( 1 ... m
) )  =  m )
4645adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( `  ( 1 ... m
) )  =  m )
47 1zzd 9353 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  1  e.  ZZ )
48 nnz 9345 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  NN  ->  m  e.  ZZ )
4948adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  ZZ )
5047, 49fzfigd 10523 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  e. 
Fin )
51 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  f : ( 1 ... m ) -1-1-onto-> A )
5250, 51fihasheqf1od 10881 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( `  ( 1 ... m
) )  =  ( `  A ) )
5346, 52eqtr3d 2231 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  =  ( `  A )
)
5453breq2d 4045 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
n  <_  m  <->  n  <_  ( `  A ) ) )
5554ifbid 3582 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  if ( n  <_  m , 
[_ ( f `  n )  /  k ]_ B ,  1 )  =  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )
5655mpteq2dv 4124 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  1 ) ) )
5756seqeq3d 10547 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) )
5857fveq1d 5560 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
5958eqeq2d 2208 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)  <->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )
6059pm5.32da 452 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  1 ) ) ) `  m ) ) ) )
6160exbidv 1839 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
6261rexbiia 2512 . . . . . . . . 9  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )
6362bicomi 132 . . . . . . . 8  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
6442, 63orbi12i 765 . . . . . . 7  |-  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
65 f1of 5504 . . . . . . . . . . . . 13  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
6619, 65syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( 1 ... M ) --> A )
673, 12fzfigd 10523 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
68 fex 5791 . . . . . . . . . . . 12  |-  ( ( F : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  Fin )  ->  F  e.  _V )
6966, 67, 68syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  _V )
7011, 2eleqtrdi 2289 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
71 fveq2 5558 . . . . . . . . . . . . . . . . 17  |-  ( n  =  u  ->  ( F `  n )  =  ( F `  u ) )
7271csbeq1d 3091 . . . . . . . . . . . . . . . 16  |-  ( n  =  u  ->  [_ ( F `  n )  /  k ]_ B  =  [_ ( F `  u )  /  k ]_ B )
73 fveq2 5558 . . . . . . . . . . . . . . . 16  |-  ( n  =  u  ->  ( G `  n )  =  ( G `  u ) )
7472, 73eqeq12d 2211 . . . . . . . . . . . . . . 15  |-  ( n  =  u  ->  ( [_ ( F `  n
)  /  k ]_ B  =  ( G `  n )  <->  [_ ( F `
 u )  / 
k ]_ B  =  ( G `  u ) ) )
7566ffvelcdmda 5697 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( F `  n )  e.  A )
7618adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  ( 1 ... M
) )  /\  k  =  ( F `  n ) )  ->  B  =  C )
7775, 76csbied 3131 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  =  C )
7877, 21eqtr4d 2232 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  =  ( G `  n ) )
7978ralrimiva 2570 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. n  e.  ( 1 ... M )
[_ ( F `  n )  /  k ]_ B  =  ( G `  n )
)
8079adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  A. n  e.  ( 1 ... M
) [_ ( F `  n )  /  k ]_ B  =  ( G `  n )
)
81 simpr 110 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  u  e.  ( 1 ... M
) )
8274, 80, 81rspcdva 2873 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  [_ ( F `  u )  /  k ]_ B  =  ( G `  u ) )
83 eqid 2196 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) )
84 breq1 4036 . . . . . . . . . . . . . . . . 17  |-  ( n  =  u  ->  (
n  <_  ( `  A
)  <->  u  <_  ( `  A
) ) )
8584, 72ifbieq1d 3583 . . . . . . . . . . . . . . . 16  |-  ( n  =  u  ->  if ( n  <_  ( `  A
) ,  [_ ( F `  n )  /  k ]_ B ,  1 )  =  if ( u  <_ 
( `  A ) , 
[_ ( F `  u )  /  k ]_ B ,  1 ) )
86 elfznn 10129 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( 1 ... M )  ->  u  e.  NN )
8786adantl 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  u  e.  NN )
88 elfzle2 10103 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  ( 1 ... M )  ->  u  <_  M )
8988adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  u  <_  M )
9011nnnn0d 9302 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  M  e.  NN0 )
91 hashfz1 10875 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  NN0  ->  ( `  (
1 ... M ) )  =  M )
9290, 91syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  M )
9367, 19fihasheqf1od 10881 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  ( `  A )
)
9492, 93eqtr3d 2231 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  M  =  ( `  A
) )
9594adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  M  =  ( `  A )
)
9689, 95breqtrd 4059 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  u  <_  ( `  A )
)
9796iftrued 3568 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  if ( u  <_  ( `  A
) ,  [_ ( F `  u )  /  k ]_ B ,  1 )  = 
[_ ( F `  u )  /  k ]_ B )
9897, 82eqtrd 2229 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  if ( u  <_  ( `  A
) ,  [_ ( F `  u )  /  k ]_ B ,  1 )  =  ( G `  u
) )
9973eleq1d 2265 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  u  ->  (
( G `  n
)  e.  CC  <->  ( G `  u )  e.  CC ) )
10022adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  A. n  e.  ( 1 ... M
) ( G `  n )  e.  CC )
10199, 100, 81rspcdva 2873 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  ( G `  u )  e.  CC )
10298, 101eqeltrd 2273 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  if ( u  <_  ( `  A
) ,  [_ ( F `  u )  /  k ]_ B ,  1 )  e.  CC )
10383, 85, 87, 102fvmptd3 5655 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) `
 u )  =  if ( u  <_ 
( `  A ) , 
[_ ( F `  u )  /  k ]_ B ,  1 ) )
104103, 97eqtrd 2229 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) `
 u )  = 
[_ ( F `  u )  /  k ]_ B )
105 breq1 4036 . . . . . . . . . . . . . . . . 17  |-  ( n  =  u  ->  (
n  <_  M  <->  u  <_  M ) )
106105, 73ifbieq1d 3583 . . . . . . . . . . . . . . . 16  |-  ( n  =  u  ->  if ( n  <_  M , 
( G `  n
) ,  1 )  =  if ( u  <_  M ,  ( G `  u ) ,  1 ) )
10789iftrued 3568 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  if ( u  <_  M , 
( G `  u
) ,  1 )  =  ( G `  u ) )
108107, 101eqeltrd 2273 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  if ( u  <_  M , 
( G `  u
) ,  1 )  e.  CC )
1094, 106, 87, 108fvmptd3 5655 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) `  u
)  =  if ( u  <_  M , 
( G `  u
) ,  1 ) )
110109, 107eqtrd 2229 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) `  u
)  =  ( G `
 u ) )
11182, 104, 1103eqtr4rd 2240 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) `  u
)  =  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) `
 u ) )
112 elnnuz 9638 . . . . . . . . . . . . . 14  |-  ( p  e.  NN  <->  p  e.  ( ZZ>= `  1 )
)
113112, 34sylan2br 288 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) `  p
)  e.  CC )
114 breq1 4036 . . . . . . . . . . . . . . . . 17  |-  ( n  =  p  ->  (
n  <_  ( `  A
)  <->  p  <_  ( `  A
) ) )
115 fveq2 5558 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  p  ->  ( F `  n )  =  ( F `  p ) )
116115csbeq1d 3091 . . . . . . . . . . . . . . . . 17  |-  ( n  =  p  ->  [_ ( F `  n )  /  k ]_ B  =  [_ ( F `  p )  /  k ]_ B )
117114, 116ifbieq1d 3583 . . . . . . . . . . . . . . . 16  |-  ( n  =  p  ->  if ( n  <_  ( `  A
) ,  [_ ( F `  n )  /  k ]_ B ,  1 )  =  if ( p  <_ 
( `  A ) , 
[_ ( F `  p )  /  k ]_ B ,  1 ) )
118 simpll 527 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  ( `  A )
)  ->  ph )
119 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  ( `  A )
)  ->  p  <_  ( `  A ) )
12094breq2d 4045 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( p  <_  M  <->  p  <_  ( `  A )
) )
121120ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  ( `  A )
)  ->  ( p  <_  M  <->  p  <_  ( `  A
) ) )
122119, 121mpbird 167 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  ( `  A )
)  ->  p  <_  M )
123122, 16syldan 282 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  ( `  A )
)  ->  p  e.  ( 1 ... M
) )
12466ffvelcdmda 5697 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ( 1 ... M
) )  ->  ( F `  p )  e.  A )
12520ralrimiva 2570 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
126125adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
127 nfcsb1v 3117 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ k [_ ( F `  p
)  /  k ]_ B
128127nfel1 2350 . . . . . . . . . . . . . . . . . . . 20  |-  F/ k
[_ ( F `  p )  /  k ]_ B  e.  CC
129 csbeq1a 3093 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  ( F `  p )  ->  B  =  [_ ( F `  p )  /  k ]_ B )
130129eleq1d 2265 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  ( F `  p )  ->  ( B  e.  CC  <->  [_ ( F `
 p )  / 
k ]_ B  e.  CC ) )
131128, 130rspc 2862 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  p )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( F `  p
)  /  k ]_ B  e.  CC )
)
132124, 126, 131sylc 62 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p  e.  ( 1 ... M
) )  ->  [_ ( F `  p )  /  k ]_ B  e.  CC )
133118, 123, 132syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  NN )  /\  p  <_  ( `  A )
)  ->  [_ ( F `
 p )  / 
k ]_ B  e.  CC )
134 1cnd 8042 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  NN )  /\  -.  p  <_  ( `  A )
)  ->  1  e.  CC )
13594, 12eqeltrrd 2274 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( `  A )  e.  ZZ )
136135adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p  e.  NN )  ->  ( `  A
)  e.  ZZ )
137 zdcle 9402 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  p  <_  ( `  A
) )
13828, 136, 137syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  NN )  -> DECID  p  <_  ( `  A
) )
139133, 134, 138ifcldadc 3590 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  NN )  ->  if ( p  <_  ( `  A
) ,  [_ ( F `  p )  /  k ]_ B ,  1 )  e.  CC )
14083, 117, 8, 139fvmptd3 5655 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) `
 p )  =  if ( p  <_ 
( `  A ) , 
[_ ( F `  p )  /  k ]_ B ,  1 ) )
141140, 139eqeltrd 2273 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) `
 p )  e.  CC )
142112, 141sylan2br 288 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) `
 p )  e.  CC )
143 mulcl 8006 . . . . . . . . . . . . . 14  |-  ( ( p  e.  CC  /\  q  e.  CC )  ->  ( p  x.  q
)  e.  CC )
144143adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( p  e.  CC  /\  q  e.  CC ) )  -> 
( p  x.  q
)  e.  CC )
14570, 111, 113, 142, 144seq3fveq 10571 . . . . . . . . . . . 12  |-  ( ph  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  1 ) ) ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) ) `  M ) )
14619, 145jca 306 . . . . . . . . . . 11  |-  ( ph  ->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) ) `  M
) ) )
147 f1oeq1 5492 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f : ( 1 ... M ) -1-1-onto-> A  <->  F :
( 1 ... M
)
-1-1-onto-> A ) )
148 fveq1 5557 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  F  ->  (
f `  n )  =  ( F `  n ) )
149148csbeq1d 3091 . . . . . . . . . . . . . . . . 17  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( F `  n )  /  k ]_ B )
150149ifeq1d 3578 . . . . . . . . . . . . . . . 16  |-  ( f  =  F  ->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  1 )  =  if ( n  <_ 
( `  A ) , 
[_ ( F `  n )  /  k ]_ B ,  1 ) )
151150mpteq2dv 4124 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) )
152151seqeq3d 10547 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) ) )
153152fveq1d 5560 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  M
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) ) `  M ) )
154153eqeq2d 2208 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  M
)  <->  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) ) `  M
) ) )
155147, 154anbi12d 473 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  M
) )  <->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( F `  n )  /  k ]_ B ,  1 ) ) ) `  M
) ) ) )
15669, 146, 155spcedv 2853 . . . . . . . . . 10  |-  ( ph  ->  E. f ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  M
) ) )
157 oveq2 5930 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
158157f1oeq2d 5500 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
159 fveq2 5558 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  M
) )
160159eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)  <->  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  M
) ) )
161158, 160anbi12d 473 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  M
) ) ) )
162161exbidv 1839 . . . . . . . . . . 11  |-  ( m  =  M  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  M
) ) ) )
163162rspcev 2868 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  E. f ( f : ( 1 ... M
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  M
) ) )  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
16411, 156, 163syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
165164olcd 735 . . . . . . . 8  |-  ( ph  ->  ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
166 nfcv 2339 . . . . . . . . . . . . . 14  |-  F/_ j if ( k  e.  A ,  B ,  1 )
167 nfv 1542 . . . . . . . . . . . . . . 15  |-  F/ k  j  e.  A
168 nfcsb1v 3117 . . . . . . . . . . . . . . 15  |-  F/_ k [_ j  /  k ]_ B
169 nfcv 2339 . . . . . . . . . . . . . . 15  |-  F/_ k
1
170167, 168, 169nfif 3589 . . . . . . . . . . . . . 14  |-  F/_ k if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 )
171 eleq1w 2257 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
172 csbeq1a 3093 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
173171, 172ifbieq1d 3583 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  1 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 ) )
174166, 170, 173cbvmpt 4128 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( j  e.  ZZ  |->  if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 ) )
175168nfel1 2350 . . . . . . . . . . . . . . 15  |-  F/ k
[_ j  /  k ]_ B  e.  CC
176172eleq1d 2265 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
177175, 176rspc 2862 . . . . . . . . . . . . . 14  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
178125, 177mpan9 281 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
179 breq1 4036 . . . . . . . . . . . . . . 15  |-  ( n  =  i  ->  (
n  <_  ( `  A
)  <->  i  <_  ( `  A ) ) )
180 fveq2 5558 . . . . . . . . . . . . . . . . 17  |-  ( n  =  i  ->  (
f `  n )  =  ( f `  i ) )
181180csbeq1d 3091 . . . . . . . . . . . . . . . 16  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B )
182 csbcow 3095 . . . . . . . . . . . . . . . 16  |-  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B
183181, 182eqtr4di 2247 . . . . . . . . . . . . . . 15  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B )
184179, 183ifbieq1d 3583 . . . . . . . . . . . . . 14  |-  ( n  =  i  ->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  1 )  =  if ( i  <_ 
( `  A ) , 
[_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B ,  1 ) )
185184cbvmptv 4129 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  1 ) )  =  ( i  e.  NN  |->  if ( i  <_  ( `  A ) ,  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B ,  1 ) )
186174, 178, 185prodmodc 11743 . . . . . . . . . . . 12  |-  ( ph  ->  E* x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
18736, 186jca 306 . . . . . . . . . . 11  |-  ( ph  ->  ( (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  e.  CC  /\ 
E* x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) ) )
188 breq2 4037 . . . . . . . . . . . . . . . 16  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  (  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )
189188anbi2d 464 . . . . . . . . . . . . . . 15  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  (
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) ) )
190189anbi2d 464 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  (
( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) ) ) )
191190rexbidv 2498 . . . . . . . . . . . . 13  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) ) ) )
192 eqeq1 2203 . . . . . . . . . . . . . . . 16  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  (
x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)  <->  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
193192anbi2d 464 . . . . . . . . . . . . . . 15  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
194193exbidv 1839 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
195194rexbidv 2498 . . . . . . . . . . . . 13  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
196191, 195orbi12d 794 . . . . . . . . . . . 12  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  (
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) ) )
197196moi2 2945 . . . . . . . . . . 11  |-  ( ( ( (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  e.  CC  /\ 
E* x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  /\  ( ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) ) )  ->  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
198187, 197sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) ) )  ->  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
199198ancom2s 566 . . . . . . . . 9  |-  ( (
ph  /\  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. i  e.  (
ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) ) )  ->  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
200199expr 375 . . . . . . . 8  |-  ( (
ph  /\  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  ->  ( ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )  ->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )
201165, 200mpdan 421 . . . . . . 7  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) )  ->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )
20264, 201biimtrrid 153 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  ->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )
20364, 196bitr3id 194 . . . . . . 7  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  (
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. i  e.  ( ZZ>= `  m )DECID  i  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) ) ) ) )
204165, 203syl5ibrcom 157 . . . . . 6  |-  ( ph  ->  ( x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  ->  ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) ) )
205202, 204impbid 129 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )
206205adantr 276 . . . 4  |-  ( (
ph  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  e.  CC )  ->  ( ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) ) )
207206iota5 5240 . . 3  |-  ( (
ph  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M )  e.  CC )  ->  ( iota x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
20836, 207mpdan 421 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
2091, 208eqtrid 2241 1  |-  ( ph  ->  prod_ k  e.  A  B  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364   E.wex 1506   E*wmo 2046    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   [_csb 3084    C_ wss 3157   ifcif 3561   class class class wbr 4033    |-> cmpt 4094   iotacio 5217   -->wf 5254   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   Fincfn 6799   CCcc 7877   0cc0 7879   1c1 7880    x. cmul 7884    <_ cle 8062   # cap 8608   NNcn 8990   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539  ♯chash 10867    ~~> cli 11443   prod_cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  prod1dc  11751  fprodf1o  11753  fprodmul  11756  prodsnf  11757
  Copyright terms: Public domain W3C validator