Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ss | Unicode version |
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5393 | . . 3 | |
2 | fss 5349 | . . 3 | |
3 | 1, 2 | sylan 281 | . 2 |
4 | df-f1 5193 | . . . 4 | |
5 | 4 | simprbi 273 | . . 3 |
6 | 5 | adantr 274 | . 2 |
7 | df-f1 5193 | . 2 | |
8 | 3, 6, 7 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wss 3116 ccnv 4603 wfun 5182 wf 5184 wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-f 5192 df-f1 5193 |
This theorem is referenced by: f1sng 5474 |
Copyright terms: Public domain | W3C validator |