ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ss Unicode version

Theorem f1ss 5487
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1ss  |-  ( ( F : A -1-1-> B  /\  B  C_  C )  ->  F : A -1-1-> C )

Proof of Theorem f1ss
StepHypRef Expression
1 f1f 5481 . . 3  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 fss 5437 . . 3  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )
31, 2sylan 283 . 2  |-  ( ( F : A -1-1-> B  /\  B  C_  C )  ->  F : A --> C )
4 df-f1 5276 . . . 4  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
54simprbi 275 . . 3  |-  ( F : A -1-1-> B  ->  Fun  `' F )
65adantr 276 . 2  |-  ( ( F : A -1-1-> B  /\  B  C_  C )  ->  Fun  `' F
)
7 df-f1 5276 . 2  |-  ( F : A -1-1-> C  <->  ( F : A --> C  /\  Fun  `' F ) )
83, 6, 7sylanbrc 417 1  |-  ( ( F : A -1-1-> B  /\  B  C_  C )  ->  F : A -1-1-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3166   `'ccnv 4674   Fun wfun 5265   -->wf 5267   -1-1->wf1 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-f 5275  df-f1 5276
This theorem is referenced by:  f1sng  5564  domssr  6869
  Copyright terms: Public domain W3C validator