Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fss | Unicode version |
Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3154 | . . . . 5 | |
2 | 1 | com12 30 | . . . 4 |
3 | 2 | anim2d 335 | . . 3 |
4 | df-f 5202 | . . 3 | |
5 | df-f 5202 | . . 3 | |
6 | 3, 4, 5 | 3imtr4g 204 | . 2 |
7 | 6 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wss 3121 crn 4612 wfn 5193 wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5202 |
This theorem is referenced by: fssd 5360 fconst6g 5396 f1ss 5409 ffoss 5474 fsn2 5670 ofco 6079 tposf2 6247 issmo2 6268 smoiso 6281 mapsn 6668 ssdomg 6756 omp1eomlem 7071 1fv 10095 fxnn0nninf 10394 abscn2 11278 recn2 11280 imcn2 11281 climabs 11283 climre 11285 climim 11286 fsumre 11435 fsumim 11436 ismet2 13148 dvfre 13468 dvrecap 13471 lgsfcl 13703 |
Copyright terms: Public domain | W3C validator |