ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fss Unicode version

Theorem fss 5359
Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fss  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )

Proof of Theorem fss
StepHypRef Expression
1 sstr2 3154 . . . . 5  |-  ( ran 
F  C_  B  ->  ( B  C_  C  ->  ran 
F  C_  C )
)
21com12 30 . . . 4  |-  ( B 
C_  C  ->  ( ran  F  C_  B  ->  ran 
F  C_  C )
)
32anim2d 335 . . 3  |-  ( B 
C_  C  ->  (
( F  Fn  A  /\  ran  F  C_  B
)  ->  ( F  Fn  A  /\  ran  F  C_  C ) ) )
4 df-f 5202 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
5 df-f 5202 . . 3  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
63, 4, 53imtr4g 204 . 2  |-  ( B 
C_  C  ->  ( F : A --> B  ->  F : A --> C ) )
76impcom 124 1  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    C_ wss 3121   ran crn 4612    Fn wfn 5193   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-f 5202
This theorem is referenced by:  fssd  5360  fconst6g  5396  f1ss  5409  ffoss  5474  fsn2  5670  ofco  6079  tposf2  6247  issmo2  6268  smoiso  6281  mapsn  6668  ssdomg  6756  omp1eomlem  7071  1fv  10095  fxnn0nninf  10394  abscn2  11278  recn2  11280  imcn2  11281  climabs  11283  climre  11285  climim  11286  fsumre  11435  fsumim  11436  ismet2  13148  dvfre  13468  dvrecap  13471  lgsfcl  13703
  Copyright terms: Public domain W3C validator