ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fss Unicode version

Theorem fss 5379
Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fss  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )

Proof of Theorem fss
StepHypRef Expression
1 sstr2 3164 . . . . 5  |-  ( ran 
F  C_  B  ->  ( B  C_  C  ->  ran 
F  C_  C )
)
21com12 30 . . . 4  |-  ( B 
C_  C  ->  ( ran  F  C_  B  ->  ran 
F  C_  C )
)
32anim2d 337 . . 3  |-  ( B 
C_  C  ->  (
( F  Fn  A  /\  ran  F  C_  B
)  ->  ( F  Fn  A  /\  ran  F  C_  C ) ) )
4 df-f 5222 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
5 df-f 5222 . . 3  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
63, 4, 53imtr4g 205 . 2  |-  ( B 
C_  C  ->  ( F : A --> B  ->  F : A --> C ) )
76impcom 125 1  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3131   ran crn 4629    Fn wfn 5213   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144  df-f 5222
This theorem is referenced by:  fssd  5380  fconst6g  5416  f1ss  5429  ffoss  5495  fsn2  5692  ofco  6103  tposf2  6271  issmo2  6292  smoiso  6305  mapsn  6692  ssdomg  6780  omp1eomlem  7095  1fv  10141  fxnn0nninf  10440  abscn2  11325  recn2  11327  imcn2  11328  climabs  11330  climre  11332  climim  11333  fsumre  11482  fsumim  11483  ismet2  13893  dvfre  14213  dvrecap  14216  lgsfcl  14448
  Copyright terms: Public domain W3C validator