ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fss Unicode version

Theorem fss 5396
Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fss  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )

Proof of Theorem fss
StepHypRef Expression
1 sstr2 3177 . . . . 5  |-  ( ran 
F  C_  B  ->  ( B  C_  C  ->  ran 
F  C_  C )
)
21com12 30 . . . 4  |-  ( B 
C_  C  ->  ( ran  F  C_  B  ->  ran 
F  C_  C )
)
32anim2d 337 . . 3  |-  ( B 
C_  C  ->  (
( F  Fn  A  /\  ran  F  C_  B
)  ->  ( F  Fn  A  /\  ran  F  C_  C ) ) )
4 df-f 5239 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
5 df-f 5239 . . 3  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
63, 4, 53imtr4g 205 . 2  |-  ( B 
C_  C  ->  ( F : A --> B  ->  F : A --> C ) )
76impcom 125 1  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3144   ran crn 4645    Fn wfn 5230   -->wf 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157  df-f 5239
This theorem is referenced by:  fssd  5397  fconst6g  5433  f1ss  5446  ffoss  5512  fsn2  5711  ofco  6125  tposf2  6293  issmo2  6314  smoiso  6327  mapsn  6716  ssdomg  6804  omp1eomlem  7123  1fv  10169  fxnn0nninf  10469  abscn2  11355  recn2  11357  imcn2  11358  climabs  11360  climre  11362  climim  11363  fsumre  11512  fsumim  11513  resmhm2  12940  ismet2  14314  dvfre  14634  dvrecap  14637  lgsfcl  14870
  Copyright terms: Public domain W3C validator