ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1sng Unicode version

Theorem f1sng 5542
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.)
Assertion
Ref Expression
f1sng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A } -1-1-> W )

Proof of Theorem f1sng
StepHypRef Expression
1 f1osng 5541 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
2 f1of1 5499 . . 3  |-  ( {
<. A ,  B >. } : { A } -1-1-onto-> { B }  ->  { <. A ,  B >. } : { A } -1-1-> { B } )
31, 2syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A } -1-1-> { B } )
4 snssi 3762 . . 3  |-  ( B  e.  W  ->  { B }  C_  W )
54adantl 277 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { B }  C_  W )
6 f1ss 5465 . 2  |-  ( ( { <. A ,  B >. } : { A } -1-1-> { B }  /\  { B }  C_  W
)  ->  { <. A ,  B >. } : { A } -1-1-> W )
73, 5, 6syl2anc 411 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A } -1-1-> W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164    C_ wss 3153   {csn 3618   <.cop 3621   -1-1->wf1 5251   -1-1-onto->wf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  fsnd  5543
  Copyright terms: Public domain W3C validator