ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1sng Unicode version

Theorem f1sng 5549
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.)
Assertion
Ref Expression
f1sng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A } -1-1-> W )

Proof of Theorem f1sng
StepHypRef Expression
1 f1osng 5548 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
2 f1of1 5506 . . 3  |-  ( {
<. A ,  B >. } : { A } -1-1-onto-> { B }  ->  { <. A ,  B >. } : { A } -1-1-> { B } )
31, 2syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A } -1-1-> { B } )
4 snssi 3767 . . 3  |-  ( B  e.  W  ->  { B }  C_  W )
54adantl 277 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { B }  C_  W )
6 f1ss 5472 . 2  |-  ( ( { <. A ,  B >. } : { A } -1-1-> { B }  /\  { B }  C_  W
)  ->  { <. A ,  B >. } : { A } -1-1-> W )
73, 5, 6syl2anc 411 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A } -1-1-> W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    C_ wss 3157   {csn 3623   <.cop 3626   -1-1->wf1 5256   -1-1-onto->wf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266
This theorem is referenced by:  fsnd  5550
  Copyright terms: Public domain W3C validator