| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | Unicode version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5264 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5264 |
| This theorem is referenced by: f1rn 5465 f1fn 5466 f1ss 5470 f1ssres 5473 f1of 5505 dff1o5 5514 fsnd 5548 cocan1 5835 f1o2ndf1 6287 brdomg 6808 f1dom2g 6816 f1domg 6818 dom3d 6834 f1imaen2g 6853 2dom 6865 xpdom2 6891 dom0 6900 phplem4dom 6924 isinfinf 6959 infm 6966 updjudhcoinlf 7147 updjudhcoinrg 7148 casef1 7157 djudom 7160 difinfsnlem 7166 difinfsn 7167 seqf1oglem1 10613 fihashf1rn 10882 ennnfonelemrn 12646 reeff1o 15019 1dom1el 15647 pwle2 15653 |
| Copyright terms: Public domain | W3C validator |