| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | Unicode version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5295 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5295 |
| This theorem is referenced by: f1rn 5504 f1fn 5505 f1ss 5509 f1ssres 5512 f1of 5544 dff1o5 5553 fsnd 5588 cocan1 5879 f1o2ndf1 6337 brdomg 6860 f1dom2g 6870 f1domg 6872 dom3d 6888 f1imaen2g 6908 2dom 6921 xpdom2 6951 dom0 6960 phplem4dom 6984 isinfinf 7020 infm 7027 updjudhcoinlf 7208 updjudhcoinrg 7209 casef1 7218 djudom 7221 difinfsnlem 7227 difinfsn 7228 seqf1oglem1 10701 fihashf1rn 10970 ennnfonelemrn 12905 reeff1o 15360 ushgruhgr 15791 umgr0e 15826 1dom1el 16126 dom1o 16128 pwle2 16137 |
| Copyright terms: Public domain | W3C validator |