| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | Unicode version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5276 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5276 |
| This theorem is referenced by: f1rn 5482 f1fn 5483 f1ss 5487 f1ssres 5490 f1of 5522 dff1o5 5531 fsnd 5565 cocan1 5856 f1o2ndf1 6314 brdomg 6837 f1dom2g 6847 f1domg 6849 dom3d 6865 f1imaen2g 6885 2dom 6897 xpdom2 6926 dom0 6935 phplem4dom 6959 isinfinf 6994 infm 7001 updjudhcoinlf 7182 updjudhcoinrg 7183 casef1 7192 djudom 7195 difinfsnlem 7201 difinfsn 7202 seqf1oglem1 10664 fihashf1rn 10933 ennnfonelemrn 12790 reeff1o 15245 1dom1el 15927 pwle2 15935 |
| Copyright terms: Public domain | W3C validator |