| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | Unicode version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5323 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5323 |
| This theorem is referenced by: f1rn 5532 f1fn 5533 f1ss 5537 f1ssres 5540 f1of 5572 dff1o5 5581 fsnd 5616 cocan1 5911 f1o2ndf1 6374 brdomg 6897 f1dom2g 6907 f1domg 6909 dom3d 6925 f1imaen2g 6945 2dom 6958 dom1o 6977 xpdom2 6990 dom0 6999 phplem4dom 7023 isinfinf 7059 infm 7066 updjudhcoinlf 7247 updjudhcoinrg 7248 casef1 7257 djudom 7260 difinfsnlem 7266 difinfsn 7267 seqf1oglem1 10741 fihashf1rn 11010 ennnfonelemrn 12990 reeff1o 15447 ushgruhgr 15880 umgr0e 15918 usgredgssen 15960 ausgrusgrben 15966 usgrss 15975 uspgrupgr 15979 usgrumgr 15982 usgrislfuspgrdom 15988 ushgredgedg 16024 ushgredgedgloop 16026 1dom1el 16354 pwle2 16364 |
| Copyright terms: Public domain | W3C validator |