Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1f | Unicode version |
Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
Ref | Expression |
---|---|
f1f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5203 | . 2 | |
2 | 1 | simplbi 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 ccnv 4610 wfun 5192 wf 5194 wf1 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f1 5203 |
This theorem is referenced by: f1rn 5404 f1fn 5405 f1ss 5409 f1ssres 5412 f1of 5442 dff1o5 5451 fsnd 5485 cocan1 5766 f1o2ndf1 6207 brdomg 6726 f1dom2g 6734 f1domg 6736 dom3d 6752 f1imaen2g 6771 2dom 6783 xpdom2 6809 dom0 6816 phplem4dom 6840 isinfinf 6875 infm 6882 updjudhcoinlf 7057 updjudhcoinrg 7058 casef1 7067 djudom 7070 difinfsnlem 7076 difinfsn 7077 fihashf1rn 10723 ennnfonelemrn 12374 reeff1o 13488 pwle2 14031 |
Copyright terms: Public domain | W3C validator |