ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1f Unicode version

Theorem f1f 5423
Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.)
Assertion
Ref Expression
f1f  |-  ( F : A -1-1-> B  ->  F : A --> B )

Proof of Theorem f1f
StepHypRef Expression
1 df-f1 5223 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
21simplbi 274 1  |-  ( F : A -1-1-> B  ->  F : A --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   `'ccnv 4627   Fun wfun 5212   -->wf 5214   -1-1->wf1 5215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f1 5223
This theorem is referenced by:  f1rn  5424  f1fn  5425  f1ss  5429  f1ssres  5432  f1of  5463  dff1o5  5472  fsnd  5506  cocan1  5790  f1o2ndf1  6231  brdomg  6750  f1dom2g  6758  f1domg  6760  dom3d  6776  f1imaen2g  6795  2dom  6807  xpdom2  6833  dom0  6840  phplem4dom  6864  isinfinf  6899  infm  6906  updjudhcoinlf  7081  updjudhcoinrg  7082  casef1  7091  djudom  7094  difinfsnlem  7100  difinfsn  7101  fihashf1rn  10770  ennnfonelemrn  12422  reeff1o  14279  pwle2  14833
  Copyright terms: Public domain W3C validator