Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1f | Unicode version |
Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
Ref | Expression |
---|---|
f1f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5213 | . 2 | |
2 | 1 | simplbi 274 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 ccnv 4619 wfun 5202 wf 5204 wf1 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f1 5213 |
This theorem is referenced by: f1rn 5414 f1fn 5415 f1ss 5419 f1ssres 5422 f1of 5453 dff1o5 5462 fsnd 5496 cocan1 5778 f1o2ndf1 6219 brdomg 6738 f1dom2g 6746 f1domg 6748 dom3d 6764 f1imaen2g 6783 2dom 6795 xpdom2 6821 dom0 6828 phplem4dom 6852 isinfinf 6887 infm 6894 updjudhcoinlf 7069 updjudhcoinrg 7070 casef1 7079 djudom 7082 difinfsnlem 7088 difinfsn 7089 fihashf1rn 10736 ennnfonelemrn 12387 reeff1o 13774 pwle2 14317 |
Copyright terms: Public domain | W3C validator |