ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffdmd Unicode version

Theorem ffdmd 5491
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ffdmd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
ffdmd  |-  ( ph  ->  F : dom  F --> B )

Proof of Theorem ffdmd
StepHypRef Expression
1 ffdmd.1 . . 3  |-  ( ph  ->  F : A --> B )
2 ffdm 5490 . . 3  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )
31, 2syl 14 . 2  |-  ( ph  ->  ( F : dom  F --> B  /\  dom  F  C_  A ) )
43simpld 112 1  |-  ( ph  ->  F : dom  F --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3197   dom cdm 4716   -->wf 5310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-fn 5317  df-f 5318
This theorem is referenced by:  upgr1edc  15906
  Copyright terms: Public domain W3C validator