ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelf Unicode version

Theorem opelf 5425
Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelf  |-  ( ( F : A --> B  /\  <. C ,  D >.  e.  F )  ->  ( C  e.  A  /\  D  e.  B )
)

Proof of Theorem opelf
StepHypRef Expression
1 fssxp 5421 . . . 4  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
21sseld 3178 . . 3  |-  ( F : A --> B  -> 
( <. C ,  D >.  e.  F  ->  <. C ,  D >.  e.  ( A  X.  B ) ) )
3 opelxp 4689 . . 3  |-  ( <. C ,  D >.  e.  ( A  X.  B
)  <->  ( C  e.  A  /\  D  e.  B ) )
42, 3imbitrdi 161 . 2  |-  ( F : A --> B  -> 
( <. C ,  D >.  e.  F  ->  ( C  e.  A  /\  D  e.  B )
) )
54imp 124 1  |-  ( ( F : A --> B  /\  <. C ,  D >.  e.  F )  ->  ( C  e.  A  /\  D  e.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   <.cop 3621    X. cxp 4657   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by:  feu  5436  fcnvres  5437  fsn  5730
  Copyright terms: Public domain W3C validator