ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelf Unicode version

Theorem opelf 5496
Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelf  |-  ( ( F : A --> B  /\  <. C ,  D >.  e.  F )  ->  ( C  e.  A  /\  D  e.  B )
)

Proof of Theorem opelf
StepHypRef Expression
1 fssxp 5491 . . . 4  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
21sseld 3223 . . 3  |-  ( F : A --> B  -> 
( <. C ,  D >.  e.  F  ->  <. C ,  D >.  e.  ( A  X.  B ) ) )
3 opelxp 4749 . . 3  |-  ( <. C ,  D >.  e.  ( A  X.  B
)  <->  ( C  e.  A  /\  D  e.  B ) )
42, 3imbitrdi 161 . 2  |-  ( F : A --> B  -> 
( <. C ,  D >.  e.  F  ->  ( C  e.  A  /\  D  e.  B )
) )
54imp 124 1  |-  ( ( F : A --> B  /\  <. C ,  D >.  e.  F )  ->  ( C  e.  A  /\  D  e.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   <.cop 3669    X. cxp 4717   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  feu  5508  fcnvres  5509  fsn  5807
  Copyright terms: Public domain W3C validator