ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffdmd GIF version

Theorem ffdmd 5454
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ffdmd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffdmd (𝜑𝐹:dom 𝐹𝐵)

Proof of Theorem ffdmd
StepHypRef Expression
1 ffdmd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffdm 5453 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
31, 2syl 14 . 2 (𝜑 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
43simpld 112 1 (𝜑𝐹:dom 𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3168  dom cdm 4680  wf 5273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3174  df-ss 3181  df-fn 5280  df-f 5281
This theorem is referenced by:  upgr1edc  15764
  Copyright terms: Public domain W3C validator