ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffdm Unicode version

Theorem ffdm 5494
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
Assertion
Ref Expression
ffdm  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )

Proof of Theorem ffdm
StepHypRef Expression
1 fdm 5479 . . . 4  |-  ( F : A --> B  ->  dom  F  =  A )
21feq2d 5461 . . 3  |-  ( F : A --> B  -> 
( F : dom  F --> B  <->  F : A --> B ) )
32ibir 177 . 2  |-  ( F : A --> B  ->  F : dom  F --> B )
4 eqimss 3278 . . 3  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
51, 4syl 14 . 2  |-  ( F : A --> B  ->  dom  F  C_  A )
63, 5jca 306 1  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    C_ wss 3197   dom cdm 4719   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-fn 5321  df-f 5322
This theorem is referenced by:  ffdmd  5495  smoiso  6448  dvcj  15383  dvfre  15384
  Copyright terms: Public domain W3C validator