ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffdm Unicode version

Theorem ffdm 5358
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
Assertion
Ref Expression
ffdm  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )

Proof of Theorem ffdm
StepHypRef Expression
1 fdm 5343 . . . 4  |-  ( F : A --> B  ->  dom  F  =  A )
21feq2d 5325 . . 3  |-  ( F : A --> B  -> 
( F : dom  F --> B  <->  F : A --> B ) )
32ibir 176 . 2  |-  ( F : A --> B  ->  F : dom  F --> B )
4 eqimss 3196 . . 3  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
51, 4syl 14 . 2  |-  ( F : A --> B  ->  dom  F  C_  A )
63, 5jca 304 1  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    C_ wss 3116   dom cdm 4604   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-fn 5191  df-f 5192
This theorem is referenced by:  smoiso  6270  dvcj  13313  dvfre  13314
  Copyright terms: Public domain W3C validator