ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgr1edc Unicode version

Theorem upgr1edc 15764
Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
upgr1e.v  |-  V  =  (Vtx `  G )
upgr1e.a  |-  ( ph  ->  A  e.  X )
upgr1e.b  |-  ( ph  ->  B  e.  V )
upgr1e.c  |-  ( ph  ->  C  e.  V )
upgr1edc.dc  |-  ( ph  -> DECID  B  =  C )
upgr1e.e  |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  C } >. } )
Assertion
Ref Expression
upgr1edc  |-  ( ph  ->  G  e. UPGraph )

Proof of Theorem upgr1edc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 upgr1e.a . . . . . 6  |-  ( ph  ->  A  e.  X )
2 upgr1e.b . . . . . . . 8  |-  ( ph  ->  B  e.  V )
3 upgr1e.c . . . . . . . 8  |-  ( ph  ->  C  e.  V )
4 prexg 4260 . . . . . . . 8  |-  ( ( B  e.  V  /\  C  e.  V )  ->  { B ,  C }  e.  _V )
52, 3, 4syl2anc 411 . . . . . . 7  |-  ( ph  ->  { B ,  C }  e.  _V )
6 snidg 3664 . . . . . . 7  |-  ( { B ,  C }  e.  _V  ->  { B ,  C }  e.  { { B ,  C } } )
75, 6syl 14 . . . . . 6  |-  ( ph  ->  { B ,  C }  e.  { { B ,  C } } )
81, 7fsnd 5575 . . . . 5  |-  ( ph  ->  { <. A ,  { B ,  C } >. } : { A }
--> { { B ,  C } } )
92, 3prssd 3795 . . . . . . . 8  |-  ( ph  ->  { B ,  C }  C_  V )
10 upgr1e.v . . . . . . . 8  |-  V  =  (Vtx `  G )
119, 10sseqtrdi 3243 . . . . . . 7  |-  ( ph  ->  { B ,  C }  C_  (Vtx `  G
) )
12 elpwg 3626 . . . . . . . 8  |-  ( { B ,  C }  e.  _V  ->  ( { B ,  C }  e.  ~P (Vtx `  G
)  <->  { B ,  C }  C_  (Vtx `  G
) ) )
135, 12syl 14 . . . . . . 7  |-  ( ph  ->  ( { B ,  C }  e.  ~P (Vtx `  G )  <->  { B ,  C }  C_  (Vtx `  G ) ) )
1411, 13mpbird 167 . . . . . 6  |-  ( ph  ->  { B ,  C }  e.  ~P (Vtx `  G ) )
15 upgr1edc.dc . . . . . 6  |-  ( ph  -> DECID  B  =  C )
1614, 2, 3, 15upgr1elem1 15763 . . . . 5  |-  ( ph  ->  { { B ,  C } }  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
178, 16fssd 5445 . . . 4  |-  ( ph  ->  { <. A ,  { B ,  C } >. } : { A }
--> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
1817ffdmd 5454 . . 3  |-  ( ph  ->  { <. A ,  { B ,  C } >. } : dom  { <. A ,  { B ,  C } >. } --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
19 upgr1e.e . . . 4  |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  C } >. } )
2019dmeqd 4886 . . . 4  |-  ( ph  ->  dom  (iEdg `  G
)  =  dom  { <. A ,  { B ,  C } >. } )
2119, 20feq12d 5422 . . 3  |-  ( ph  ->  ( (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  <->  { <. A ,  { B ,  C } >. } : dom  { <. A ,  { B ,  C } >. } --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } ) )
2218, 21mpbird 167 . 2  |-  ( ph  ->  (iEdg `  G ) : dom  (iEdg `  G
) --> { x  e. 
~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
23101vgrex 15669 . . 3  |-  ( B  e.  V  ->  G  e.  _V )
24 eqid 2206 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
25 eqid 2206 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
2624, 25isupgren 15741 . . 3  |-  ( G  e.  _V  ->  ( G  e. UPGraph  <->  (iEdg `  G ) : dom  (iEdg `  G
) --> { x  e. 
~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } ) )
272, 23, 263syl 17 . 2  |-  ( ph  ->  ( G  e. UPGraph  <->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } ) )
2822, 27mpbird 167 1  |-  ( ph  ->  G  e. UPGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177   {crab 2489   _Vcvv 2773    C_ wss 3168   ~Pcpw 3618   {csn 3635   {cpr 3636   <.cop 3638   class class class wbr 4048   dom cdm 4680   -->wf 5273   ` cfv 5277   1oc1o 6505   2oc2o 6506    ~~ cen 6835  Vtxcvtx 15661  iEdgciedg 15662  UPGraphcupgr 15737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-1o 6512  df-2o 6513  df-er 6630  df-en 6838  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-upgren 15739
This theorem is referenced by:  upgr1eopdc  15766
  Copyright terms: Public domain W3C validator