ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgr1edc Unicode version

Theorem upgr1edc 15906
Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
upgr1e.v  |-  V  =  (Vtx `  G )
upgr1e.a  |-  ( ph  ->  A  e.  X )
upgr1e.b  |-  ( ph  ->  B  e.  V )
upgr1e.c  |-  ( ph  ->  C  e.  V )
upgr1edc.dc  |-  ( ph  -> DECID  B  =  C )
upgr1e.e  |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  C } >. } )
Assertion
Ref Expression
upgr1edc  |-  ( ph  ->  G  e. UPGraph )

Proof of Theorem upgr1edc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 upgr1e.a . . . . . 6  |-  ( ph  ->  A  e.  X )
2 upgr1e.b . . . . . . . 8  |-  ( ph  ->  B  e.  V )
3 upgr1e.c . . . . . . . 8  |-  ( ph  ->  C  e.  V )
4 prexg 4294 . . . . . . . 8  |-  ( ( B  e.  V  /\  C  e.  V )  ->  { B ,  C }  e.  _V )
52, 3, 4syl2anc 411 . . . . . . 7  |-  ( ph  ->  { B ,  C }  e.  _V )
6 snidg 3695 . . . . . . 7  |-  ( { B ,  C }  e.  _V  ->  { B ,  C }  e.  { { B ,  C } } )
75, 6syl 14 . . . . . 6  |-  ( ph  ->  { B ,  C }  e.  { { B ,  C } } )
81, 7fsnd 5612 . . . . 5  |-  ( ph  ->  { <. A ,  { B ,  C } >. } : { A }
--> { { B ,  C } } )
92, 3prssd 3826 . . . . . . . 8  |-  ( ph  ->  { B ,  C }  C_  V )
10 upgr1e.v . . . . . . . 8  |-  V  =  (Vtx `  G )
119, 10sseqtrdi 3272 . . . . . . 7  |-  ( ph  ->  { B ,  C }  C_  (Vtx `  G
) )
12 elpwg 3657 . . . . . . . 8  |-  ( { B ,  C }  e.  _V  ->  ( { B ,  C }  e.  ~P (Vtx `  G
)  <->  { B ,  C }  C_  (Vtx `  G
) ) )
135, 12syl 14 . . . . . . 7  |-  ( ph  ->  ( { B ,  C }  e.  ~P (Vtx `  G )  <->  { B ,  C }  C_  (Vtx `  G ) ) )
1411, 13mpbird 167 . . . . . 6  |-  ( ph  ->  { B ,  C }  e.  ~P (Vtx `  G ) )
15 upgr1edc.dc . . . . . 6  |-  ( ph  -> DECID  B  =  C )
1614, 2, 3, 15upgr1elem1 15905 . . . . 5  |-  ( ph  ->  { { B ,  C } }  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
178, 16fssd 5482 . . . 4  |-  ( ph  ->  { <. A ,  { B ,  C } >. } : { A }
--> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
1817ffdmd 5491 . . 3  |-  ( ph  ->  { <. A ,  { B ,  C } >. } : dom  { <. A ,  { B ,  C } >. } --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
19 upgr1e.e . . . 4  |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  { B ,  C } >. } )
2019dmeqd 4922 . . . 4  |-  ( ph  ->  dom  (iEdg `  G
)  =  dom  { <. A ,  { B ,  C } >. } )
2119, 20feq12d 5459 . . 3  |-  ( ph  ->  ( (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  <->  { <. A ,  { B ,  C } >. } : dom  { <. A ,  { B ,  C } >. } --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } ) )
2218, 21mpbird 167 . 2  |-  ( ph  ->  (iEdg `  G ) : dom  (iEdg `  G
) --> { x  e. 
~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
23101vgrex 15806 . . 3  |-  ( B  e.  V  ->  G  e.  _V )
24 eqid 2229 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
25 eqid 2229 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
2624, 25isupgren 15880 . . 3  |-  ( G  e.  _V  ->  ( G  e. UPGraph  <->  (iEdg `  G ) : dom  (iEdg `  G
) --> { x  e. 
~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } ) )
272, 23, 263syl 17 . 2  |-  ( ph  ->  ( G  e. UPGraph  <->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } ) )
2822, 27mpbird 167 1  |-  ( ph  ->  G  e. UPGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   {csn 3666   {cpr 3667   <.cop 3669   class class class wbr 4082   dom cdm 4716   -->wf 5310   ` cfv 5314   1oc1o 6545   2oc2o 6546    ~~ cen 6875  Vtxcvtx 15798  iEdgciedg 15799  UPGraphcupgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878  df-sub 8307  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-dec 9567  df-ndx 13021  df-slot 13022  df-base 13024  df-edgf 15791  df-vtx 15800  df-iedg 15801  df-upgren 15878
This theorem is referenced by:  upgr1eopdc  15908
  Copyright terms: Public domain W3C validator