ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb2 Unicode version

Theorem hbsb2 1824
Description: Bound-variable hypothesis builder for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbsb2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )

Proof of Theorem hbsb2
StepHypRef Expression
1 sb4 1820 . 2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
2 sb2 1755 . . 3  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
32a5i 1531 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x [ y  /  x ] ph )
41, 3syl6 33 1  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1341   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator